• Title/Summary/Keyword: 미소 간극

Search Result 31, Processing Time 0.026 seconds

Estimation of Discharge Current Waveshapes in Short Gap Discharge by One Antennal Method (1 안테나 법에 의한 미소 간극의 방전 전류파형 추정)

  • 김기채;이광식;이동인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • This paper presents the method for an estimation of discharge current waveshapes in short gap discharge by a radiated electromagnetic field. The method of currentwaveform estimation described is using the one antenna method(single field method) with a measured electric or magnetic fields at given field point by a time domain antenna. In order to verify the availability of the estimated theory, the discharge current waveshape estimation was performed by one antenna method using the measured electric fields of Wilson & Ma and compared with experiments.

  • PDF

매립지 원지반 침하량 역산에 의한 기초 압축 특성 연구

  • 김용인;현근일;박정용;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.399-403
    • /
    • 2003
  • 해안의 연약지반에 건설되는 폐기물 매립지는 매립지의 안정성 평가를 위하여 하부기초지반의 침하거동 특성에 대한 분석이 필요하다. 본 연구에서는 현장 침하계측자료를 이용하여 현장 간극비와 현장 압축지수를 역산하여 그 특성을 분석하였다. 그 결과 매립초기에는 상부하중에 의한 유효응력증가가 미소하여 하부기초지반은 과압밀 특성을 나타내고 현장 압축지수 변화가 미소하였으나, 매립이 진행될수록 상부하중이 선행압밀하중을 초과하여 정규압밀영역으로 변화함에 따라 큰 폭의 증가를 보였다.

  • PDF

Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM (LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법)

  • Jeong, Dong-Woon;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

Estimation of Discharge Current Waveshapes in Short Gap Discharge by Radiated Electromagnetic Fields (방사 전자파에 의한 미소 간극 방전원의 방전 전류파형 추정)

  • 김기채;이광식;이동인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.259-267
    • /
    • 2000
  • This paper presents the method for an estimation of discharge current waveshapes in short gap discharge by radiated electromagnetic fields. The method of current waveform estimation described is using the one antenna method(single field method) and two antennal method(complex field method) with a measured electric or magnetic fields at given field point by a time domain antenna. In order to verify the availability of the estimation theory, the discharge current waveshape estimation was performed by one and two antenna methods using the measured electric fields of Wilson & Ma and compared with experiments.

  • PDF

The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay (과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향)

  • 김수삼;김병일;한상재;신현영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.286-294
    • /
    • 2002
  • This study investigated the effects of stress and time history of overconsolidated clayey soils on pore pressure parameter, A. Laboratory tests were carried out under the conditions of both varying stress and time history. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. The time history is divided into (i) loading rate of recent stress path and (ii) rest time. Pore pressure parameters are different both in the magnitude and trend with the rotation angle, depending on the magnitude of overconsolidation ratio but not in a trend. In addition, the pore pressure parameters have no effects on the magnitude of length of recent stress path except the level of initially small strain, while loading rates of recent stress path have effects on it. Finally, the pore pressure parameters of overconsolidated clays increase with the existence of the rest time, until either the deviator stress exceeds 70 kPa or the strain up to 0.1%.

A Numerical Study on the Correlation between Joint Roughness and Hydraulic Characteristics (절리면 거칠기와 수리특성의 상관성에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.176-186
    • /
    • 2014
  • Roughness, aperture and filling material of rock joint are widely considered to affect the hydraulic characteristics of joint. Among these factors, in this study, the joint roughness was examined with artificial joint profiles generated by Monte Carlo simulating on the original profiles suggested by Barton and Choubey(1977). Original profiles and revised profiles were combined to establish flow channel models, in which the hydraulic characteristics were analyzed numerically on the basis of minimum aperture changes and flow channel shapes. Maximum flow rate was identified at the growing point of flow area after passing through minimum aperture generated by the two profiles, and it was resulted that maximum flow rate is inversely proportional to minimum aperture. Maximum flow rate per unit area showed different values because flow channel shapes and minimum aperture locations are different in each model. In flow channel, mechanical aperture showed approximately 1.07 ~ 3.00 times larger than hydraulic aperture. In this study, mechanical and hydraulic aperture were concluded to be closely related to $A_i$ value, and their relations can be denoted by $e_m=0.519A^{0.7169_i}$ and $e_h=0.6182A^{0.239}_i$, respectively.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

Dynamic Behavior of Decomposed Granite Soils (화강풍화토의 동적 거동)

  • 이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 1999
  • Recently, problems related to vibrations of decomposed granite soils have acquired increasing attention in Korea because those soils cover approximately one third of the country. Both resonant column and cyclic triaxial test were performed to investigate deformation characteristics of unsaturated and cement-mixed decomposed granite soils in Suwon region. The important soil parameters in this respect are the shear moduli, dynamic moduli of elasticity and damping ratios. The dynamic parameters are influenced by variables such as strain amplitude, ratio of loading cycles, and degree of saturations, etc. Test results and data have shown that the optimum degree of saturation to the maximum shear modulus due to a capillary menisci effect was about 17~18 % at low strain amplitude and 10~15 % at intermediate strain amplitude. This paper suggests the range of threshold strain and mean shear modulus of decomposed granite soils in Suwon region. It also proposed the empirical relationship between the dynamic parameters for cement-mixed and non-mixed decomposed granite soils.

  • PDF

Analysis of Cementation Effect on Small Strain Shear Modulus of Sand (사질토의 미소변형 전단탄성계수에 대한 고결영향 분석)

  • Lee, Moon-Joo;Choo, Hyunwook;Choi, Sung-Kun;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.51-58
    • /
    • 2009
  • In this study, the small strain shear moduli ($G_{max}$) of uncemented and gypsum-cemented sands are evaluated by performing a series of bender element tests on the specimens reconstituted in the calibration chamber. It is observed from the experimental results that $G_{max}$ of crushed-sands is about 35~50% smaller than that of natural sands. The increase in gypsum content is observed to result in an exponential increase of $G_{max}$ value. It is also shown that the relative density has more significant effect on $G_{max}$ of cemented sand, whereas the vertical effective stress has more significant influence on $G_{max}$ of uncemented one. A prediction equation for cemented sand is expressed as a function of gypsum content as well as void ratio and vertical effective stress.