• Title/Summary/Keyword: 미세 캡슐화

Search Result 66, Processing Time 0.041 seconds

Effect of Feeding the High Levels of Microcapsulated Inulin on Egg and Blood Lipid Profile in Laying Hens (산란계의 혈액 및 계란지질에 관한 고수준의 미세캡슐화 이눌린 급여효과)

  • Park, Sang-Oh;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.214-223
    • /
    • 2012
  • This study was carried out to investigate the feeding effects of microcapsulated inulin (MI) from Jerusalem artichoke (Helianthus tuberosus L.) on blood lipid, fatty acid composition and cholesterol of egg in laying hens. Hyline brown layers of 25 weeks old were subjected to one of the following treatments for 4 weeks: a control group without MI, 800 ppm, 900 ppm, and 1,000 ppm. Compared with control group, levels of triacylglyceride and cholesterol in blood and egg cholesterol decreased significantly in groups MI groups. Egg saturated fatty acid was lower in MI groups than control group but not unsaturated fatty acid was significantly high in MI groups as compared to the group without MI. The results suggest that the addition of microcapsulated inulin to a laying hens' diet can improve egg quality by reducing blood lipids.

Comparison of the Gel Formation Ability and Stability of Encapsulated Microbial Inoculant Using Extractable Alginate from Sea Tangle (다시마 추출 Alginate를 이용한 미생물 캡슐화제의 겔 형성능 및 생균력 비교)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.170-174
    • /
    • 2006
  • For the purpose of developing a high quality agricultural microbial inoculant, methods and materials for improving encapsulation were investigated. Preparation of capsule was conducted by improving extrusion system with micro-nozzle and peristaltic pump. The sodium alginate was selected because of its cheapness, stability of cells, and gel formation ability. The yields, physical properties and gel formation abilities of extractable alginate from sea tangle were investigated by hot water extractable and alkali soluble methods. The extraction yields of hot water extractable alginate (HWEA) and alkali soluble alginate (ASA) from sea tangle were 8 and 20%, respectively. The HWEA was almost not viscous even in 1.5% of the sample solution, whereas the ASA was very highly viscous in above 3% sample solution. The gel formation ability of each samples varied from 1.5% to 5% and the ASA showed a good gel formation ability at 3% solution as commercial alginate (CA). The soil microbial inoculant, Bacillus thuringiensis, Bacillus subtilis, Lactobacillus plantarum and Geotrichum candidum encapsulated sodium alginate with starch and zeolite for stabilizer. The survivability of encapsulated soil microbial inoculant using alginate without stabilizer appeared to be 66, 52, 70 and 50%, respectively. Inclusion of starch and zeolite with alginate bead increased viabilities in Bacillus sp. and Geotrichum candidum by 81-83% and 89%, respectively.

Preparation and Effect of Eudragit E100 Microcapsules Containing Grapefruit Seed Extract on Kimchi (자몽씨 추출물을 함유한 Eudragit E100 미세캡슐의 제조 및 김치에 대한 영향)

  • 김한수;정성기;조성환;구재관;이승철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1239-1244
    • /
    • 2003
  • Microcapsules were prepared by coacervation method using acetone/liquid paraffin system to control the ripening of kimchi. Eudragit E100, which was soluble at below pH 5.0 in aqueous solution, was used to make microcapsules to be sensitive to acidity of kimchi. The microcapsules with Eudragit E100 containing grapefruit seed extract (GFSE) showed the highest yield of 92.13%, the size of microcapsules was decreasing as increasing the amount of aluminium stearate, a dispersing agent. Morphology of the microcapsules determined by scanning electron microscopy showed spherical forms. GFSE, encapsulated antimicrobial agents, was quickly released at acidic buffer (pH 4,5,6) within 1 storage day. However, 70% of encapsulated GFSE in Eudragit E100 microcapsules was continuously released at pH 7 till 3 days, and it was sustained till 9 days. Characteristics of kimchi containing microcapsules of GFSE were analysed with ripening period. Decease of pH in kimchi was retarded with the added GFSE microcapsules till 2 days of fermentation, but GFSE did not affect pH in kimchi after 3 days. Total numbers of microorganisms and lactic acid microorganisms in kimchi were decreased with increasing the amount of the added GFSE microcapsules, however, the effect of controlled released GFSE from pH sensitive Eudragit E100 microcapsules was hard to detect. These results suggest the possibility of pH sensitive microcapsules for high qualify of kimchi.

A Study on the Encapsulation of Cosmetic Emulsion Using Microfluidics (Microfluidics를 이용한 화장품 에멀젼 캡슐레이션에 대한 연구)

  • Jeong, Nam-Gyun;Jin, Hong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2021
  • The cosmetic industry is technology-intensive in the field of fine chemistry and continues to grow globally. The functional aspects have been mainly emphasized in the past to increase the market share in these cosmetics industries. Recently, however, efforts have been made to attract the attention of consumers to the visual effects as well as the excellent performance of cosmetics at home and abroad. Accordingly, cosmetic manufacturers are trying various technologies that encapsulate the cosmetic emulsion and modify the shape, color, and texture of the emulsion capsule. The basic and easiest method of encapsulating emulsion is dropping the emulsion through the nozzle from emulsion storage. On the other hand, the existing method of encapsulating emulsion has a limit in reducing the size of the capsule. In this study, the limit was shown by theory and numerical analysis method, and the emulsion encapsulation phenomena occurring in the micro-channel were studied to apply microfluidics as an alternative.

A Study on Wall Materials for Flavor Encapsulation (향기 성분의 미세캡슐화를 위한 피복물질에 대한 연구)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1563-1569
    • /
    • 1999
  • For the encapsulation of flavor compounds, maltodextrin (MD), gum arabic (GA) alkenylsuccinated modified starch (MS) and gellan gum were chosen for wall materials and their combination was optimized. Five fruit flavor compounds having boiling point of $90{\sim}200^{\circ}C$ were selected as core materials and their mixture was incorporated with rapeseed oil (flavor mixture to oil = 1 : 4). Flavor compound mixture to wall material ratio of 1 : 4 was selected, and the amount of maltodextrin was fixed to 30% of the wall material mixture. Gellan gum was selected as an additional wall material to increase emulsion stability. The optimum combination ratio of the wall material mixture for maximal total oil retention and minimal surface oil content is : 30.0% MD ; 26.4% GA ; 39.6% MS ; 4% gellan gum.

  • PDF

Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds (향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.132-139
    • /
    • 2000
  • This study was conducted to optimize the emulsion process and the spray drying process for the microencapsulation of flavor compounds. Using the wall system selected, emulsion process for microencapsulation was optimized on the change of the pressure of piston-type homogenizer. Emulsification pressure of 34.5 MPa was found to be the most suitable for preparing flavor emulsion. Effects of drying temperature and atomizer speed of the spray drier on total oil, surface oil, and flavor release of the flavor powder were investigated using response surface methodology. The optimum spray drying conditions for minimal surface oil and flavor release and maximum total oil were $170{\circ}C$ inlet temperature and 15,000 rpm atomizer speed. The spray-dried powder processed with the highest drying temperature showed spherically-shaped particles with smooth surface.

  • PDF

Microencapsulation Characteristics Depending on Mixing Ratio of Wall Materials and Squid Liver Oil (피복물질과 오징어 간유의 혼합 비율에 따른 미세캡슐화 특성)

  • Hwang, Sung-Hee;Youn, Kwang-Sup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.100-104
    • /
    • 2007
  • This study was carried out to investigate the microencapsulation characteristics of squid liver oil according to various ratios of wall materials and squid liver oil. The emulsion stability and the water binding capacity increased with an increase in wall materials contents. The microencapsulation efficiency was found to be in the order of 7:3>4:6>3:7>5:5>6:4 by mixing ratio of wall materials and squid liver oil; also, ratio of 7:3 was found to be inappropriate because the oil content in the powder was not sufficient. Regarding the fatty acid composition, the content of polyunsaturated fatty acid was found to be over 50% in all treatment groups. The ratio of polyunsaturated to saturated fatty acid of the powder was the highest (2.13) at the mixing ratio of 4:6.