• 제목/요약/키워드: 미세 분산유 처리

검색결과 4건 처리시간 0.017초

콜레이서를 이용한 배기가스 세정수 처리 성능에 관한 연구 (A Study on the Treatment Performance of Coalescer to Treat Exhaust Gas Cleaning Water)

  • 하신영;김인수
    • 한국항해항만학회지
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2016
  • 본 연구에서는 선박에서 발생하는 대기오염물질을 처리하기 위해 사용되는 습식 스크러버를 이용한 배기가스 세정시스템(EGCS: Exhaust Gas Cleaning System)에서 발생되는 폐수를 재이용 할 수 있는 순환시스템을 개발하기 위해 진행되었다. 선박 배기가스 DePM, DeSOx 순환처리장치 (Recycle system)의 세정수의 입자성물질과 분산유를 효과적으로 제거할 수 있는 수 처리 시스템을 개발한 결과 원심분리형 Purifier만으로는 미세한 분산유의 처리가 어렵다는 결과가 도출되어 원심분리형 Purifier 후처리로 유수분리 경사 분리판을 이용한 유수분리기의 일종인 Coalescer를 본 시스템에 적용하였다. Coalescer는 2차 분산 상태의 에멀젼화 된 미세 기름입자를 합착시켜 분리하는 기술이다. 선박 배기가스 DePM, DeSOx 순환처리장치 (Recycle system)에서 배출되는 세정수를 Purifier와 Coalescer를 이용하여 처리한 결과 입자성물질은 55% 분산유는 유입수 대비 99%이상 처리되는 것을 확인하였다. 따라서 선박 대기오염 저감을 위한 습식세정탑 시스템에 본 세정수 처리시스템을 도입하면 세정수로서 재사용이 가능하다고 판단된다.

반응표면분석법에 의한 양파유 미세캡슐화 공정의 최적화 (Optimization of Onion Oil Microencapsulation by Response Surface Methodology)

  • 홍은미;유문균;노봉수;장판식
    • 한국식품과학회지
    • /
    • 제34권3호
    • /
    • pp.437-443
    • /
    • 2002
  • 생체내에서 각종 생리활성이 있는 양파유의 기능성 및 저장성 향상을 위하여 agar와 gelatin이 혼합되어 있는 물질을 피복물질로 사용하여 양파유(중심물질)를 미세하게 캡슐화하는 작업을 수행하였으며, 먼저 양파유 미세캡슐화 수율을 예민하게 측정할 수 있는 방법을 ethyl acetate 추출 및 gas chromatography 기술을 사용하여 확립하였다. 확립된 미세캡슐화 수율 측정법을 사용하여 양파유 미세캡슐화를 위한 제반 공정조건들, 즉 [중심물질, Cm] : [피복물질, Wm]의 비율($X_1$), 분산액의 온도($X_2,\;^{\circ}C$), 분산액내의 detergent 농도($X_3$, %(w/v)), 유화체의 농도($X_4$, %(w/w)) 등의 최적화를 수행하였으며, 공정 최적화를 위해서는 반응표면분석법(response surface methodology, RSM)을 이용하였다. RSREG 처리 결과, 4가지 독립변수가 각각 변화함에 따른 미세캡슐화 수율(Y, %)에 대한 회귀식은 $Y=97.028571-0.775000(X_1)-0.746726(X_1){\cdot}(X_1)-1.100000(X_3){\cdot}(X_2)$으로 표현되었으며, 반응표면분석 결과 양파유 미세캡슐화를 위한 최적화 조건으로서 [중심물질, Cm] : [피복물질, Wm]의 비율은 4.5 : 5.5(w/w), 분산액의 온도는 $17.1^{\circ}C$, 분산액내 detergent농도는 0.037%(w/w), 유화제(sorbitan monolaurate, HLB 16.7)의 농도는 0.42%(w/w)인 것으로 판명되었으며(미세캡슐화 수율의 최대 예측값은 95.7%), 이상의 최적조건하에서 양파유 미세캡슐화를 실제 수행한 결과 96.2%의 미세캡슐화수율 실측값을 얻을 수 있었다. 따라서, RSM에 의하여 결정된 미세캡슐화 최적 조건은 ${\pm}5%$ 오차범위내에서의 높은 신뢰성을 갖는 것으로 판명되었으며, 실제 미세캡슐화 공정에 적용가능한 것으로 판단되었다.

Transglutaminase로 처리한 초고온 살균유 침전물의 전자현미경적 관찰 (Electron Microscopical Observation of Transglutaminase-treated Ultra High Temperature Milk Sedimiment)

  • 문정한;홍윤호
    • 한국식품영양과학회지
    • /
    • 제33권8호
    • /
    • pp.1359-1366
    • /
    • 2004
  • 초고온-살균 우유를 이용하여 탈지유와 콜로이드성 인산칼슘이 제거된 우유에 TGase를 첨가하여 반응시킨 다음 초고속 원심분리를 실시하고 침전된 카제인 입자들을 동결건조하여 조직의 성상에 대해 주사 전자 현미경을 이용해 관찰, 비교하였다 탈지유는 카제인 입자들이 원심분리 초기(5,000${\times}$g)에는 규칙적으로 회합하였으며 원심분리 속도가 증가하면서 홈을 형성하였고(10,000∼20,000${\times}$g), 40,000${\times}$g에서 다시 회합하였다. 그리고, 100,000${\times}$g에서는 카제인 입자 수의 증가와 함께 규칙적인 회합층을 이루었다. 탈지유에 TGase를 처리하고 1시간 반응시킨 경우에 카제인 입자들의 성상은 입자들끼리 엉켜져서 회합을 하였으며 초고속 원심 분리 속도 증가에 따라 규칙적으로 혹은 불규칙적으로 변형되면서 입자들이 넓어지다가 다시 규칙적으로 카제인 입자들이 회합층을 이루었다. 탈지유에 TGase를 처리하고 8시간 반응시킨 경우 카제인 입자들의 성상은 1시간 반응시킨 경우보다 카제인 입자들이 미세해지면서 규칙적인 층을 형성하였으며, 초고속 원심분리 속도가 증가함에 따라 카제인입자들의 조직이 홈을 형성하면서 불규칙적으로 회합하여 분산된 형태를 나타내다가 다시 비교적 규칙적으로 회합하였다. 콜로이드성 인산칼슘이 유리된 우유에서는 카제인 입자들이 침전되지 않았다. TGase가 첨가되어 1시간 반응시킨 후 콜로이드성 인산칼슘이 유리된 우유에서는 20,000${\times}$g 속도에서부터 카제인 입자들이 침전하였고 그 양상은 작은 낙엽처럼 미세하게 회합층을 형성하였으며, 속도 증가에 따라 카제인 입자들의 조직은 개방되었다. TGase가 첨가된 후 8시간 반응시킨 다음 콜로이드성 인산칼슘이 유리된 시료의 경우 카제인 입자들은 대부분 넓게 회합층을 이루고 불규칙적이었으며 원심분리 속도 증가에 따라서도 큰 변화가 없었다. TGase가 첨가된후 1시간 혹은 8시간 반응시킨 다음 콜로이드성 인산칼슘을 제거하고 원심분리한 현탁액(유청 단백질)을 pH 4.6으로 조정 후 2단계 원심 분리한 침전물의 경우 카제인 입자들은 1시간 반응시킨 시료에서는 대부분의 카제인 입자들끼리 엉켜져 불규칙적인 회합층을 이루고 있는 반면에 8시간 반응시킨 시료에서는 입자들이 미세한 형태로 분산되어 규칙적인 층을 형성하였다.

유선형 스텝에 의해 안정화된 예혼합화염의 구조와 연소특성에 관한 연구 ($\Pi$) (A Study on the Flame Structure and Combustion Charactexistics of a Premixed Flame Stabilized by a Streamline Step( $\Pi$))

  • 이재득;최병륜
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1661-1668
    • /
    • 1990
  • 본 연구에서는 코히런트 와(渦)에 지배되는 난류 예혼합화염의 미세구조를 밝 히기 위해 슐리이렌사진과 온도, 이온전류의 3가지를 동시에 측정하고, 그 변동량을 통계처리, 분석하여, 미시적인 화염구조 모델을 제시하고자 한다.