• Title/Summary/Keyword: 미세핀

Search Result 50, Processing Time 0.033 seconds

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

펄스 고전압을 이용한 해수모세관방전에서 고전압 펄스 방전특성 연구

  • Seok, Dong-Chan;Yu, Seung-Min;Hong, Eun-Jeong;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.248-248
    • /
    • 2011
  • 유전체 모세관을 이용한 해수에서의 펄스고전압 방전 특성을 연구하였다. 내경 1, 2, 3 mm의 구멍이 뚫린 Quartz 블럭에 외경 1, 2, 3 mm의 SUS 핀을 삽입하였고 삽입된 핀의 끝이 해수에 담구어 지도록 하여 고전압 방전을 발생 시켰다. 인가된 펄스 고전압은 5 kHz의 반복 주파수를 가지며, Pulse 폭을 $1{\sim}2.5{\mu}sec$까지 변화 시켜 전압전류 파형과 방전양상을 살펴 보았다. 방전은 펄스폭 변화에 따라 전해전도 전류에 의한 모세관 가열, 모세관내 미세기포형성, 기포내의 코로나 방전 개시 그리고 글로우 또는 아크방전으로 발전하는 것을 확인하였다. 모세관의 길이는 각각의 구경에 대하여 5 mm, 10 mm 두 가지로 변화하여 실험하였고, 모세관 길이 10 mm 조건에서는 방전이 매우 불안정 하였다. 각각의 방전조건별로 1~5분간 방전을 진행하여 해수내의 유리염소의 농도 변화를 살펴본 결과 방전모드가 글로우 또는 아크 방전 모드에서 단위 에너지당 유리염소 발생 수율이 큰 폭으로 증가하는 것을 확인할 수 있었다.

  • PDF

The development of the Ionizer using clean room (청정환경용 정전기 제거장치 개발)

  • Jeong, Jong-Hyeog;Woo, Dong Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.603-608
    • /
    • 2018
  • Although the voltage-applied discharge method is most widely used in the semiconductor and display industries, periodic management costs are incurred because the method causes defects due to the absorption of ambient fine dust and causes emitter tip contamination due to the discharge. The emitter tip contamination problem is caused by the accumulation of fine particles in ambient air due to the corona discharge of the ionizer. Fuzzy ball generation accelerates the wear of the emitter tip and deteriorates the performance of the ionizer. Although a mechanical cleaning method using a manual brush or an automatic brush is effective for contaminant removal, it requires management of additional mechanical parts by the user. In some cases, contaminants accumulated in the emitter may be transferred to the wafer or product. In order to solve this problem, we developed an ionizer for a clean environment that can remove the pencil-type emitter tip and directly ionize the surrounding gas molecules using the tungsten wire located inside the ion tank. As a result of testing and certification by the Korea Institute of Machinery and Materials, the average concentration was $0.7572particles/ft^3$, the decay time was less than two seconds, and the ion valance was 7.6 V, which is satisfactory.

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites (블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성)

  • Jeong, Hyeon-A;Lee, Chang Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing (핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향)

  • Lee Dae-Young;Yu Jae-Hun;Yu Tae-U;Hwang Jungho;Kim Yong-Jun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

R-22 Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 응축에 관한 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

An Experimental study on R-22 Evaporation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 증발에 관한 실험적 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Jong-Won;Jeong, Ho-Jong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.96-103
    • /
    • 2000
  • In this study, evaporation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables ; vapor quality $(0.1{\sim}0.9)$, mass flux$(100{\sim}600kg/m^2s)$ and heat flux$(5{\sim}15kW/m^2)$. The micro-tin tube showed higher heat transfer coefficients compared with those of the smooth tube. Results showed that, for the smooth tube, the effects of mass flux, quality and heat flux were not prominent, and existing correlations overpredicted the data. For the micro-fin tube at low quality, the heat transfer coefficient increased as heat flux increased. However, the trend was reversed at high quality Kandlikar's correlation predicted the low mass flux data, and Shah's correlation predicted the high mass flux data. The heat transfer coefficient of the micro fin tube was approximately two times larger than that of the plain tube. New correlation was developed based on present data.

  • PDF