• Title/Summary/Keyword: 미세튜브

Search Result 133, Processing Time 0.032 seconds

Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions (템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성)

  • Lee Seung Hyoun;Suh Su-Jeong;Yun Geum-Hee;Son Yongkeun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The nano or micro sized structures of conducting polymer had been prepared by synthesizing the desired polymer within the pores of template of nano or micro porous membrane filter. In this study, we had tried to fabricate conducting polymer microstructures on an electrode by using electrochemical deposition adopting template synthesis. Our attention was focused on two different things, attaching template on the electrode and fabricating microstructures only at limited areas of the electrode. A conducting polymer, PEDiTT (poly 3,4-ethylenedithi-athiophene) solution was blended with PVA(polyvinyl alcohol) solution and used as an conducting adhesive. After attaching template membrane, the electrode were immersed in 0.5M pyrrole in 0.1M KCI solution, and electrochemical polymerization was performed. The growth process of the microstructures studied by SEM. The electrochemical fabrication of conducting polymer was performed by using two-electrode system. A large working electrode and a micro scale disc electrode were used for the confined area synthesis. Polymerization potential was 4V in an electrolytic solution made of KCI in deionized water. The optimum polymerization conditions were, i.e. (4V/100sec) for $250{\mu}m$ electrode and (6V/30 sec) for $10{\mu}m$ electrode.

하이브리드 탄소소재가 에폭시 복합체의 열전도도에 미치는 영향

  • An, Yu-Jin;Park, Ji-Seon;Sin, Gwon-U;Kim, Yun-Jin;Seo, Eun-Ha;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.187.2-187.2
    • /
    • 2014
  • 최근 다양한 카본 나노소재들이 열 전도성 필러로써 고분자 복합체의 열전도도 향상을 위해 연구되고 있다. 그러나 구조적 이방성을 갖는 탄소나노튜브(CNT) 혹은 그래핀나노플레이트(Graphene Nanoplatelet)를 복합체에 적용할 경우, 복합체의 수직 방향과 수평 방향에서의 열전도도가 3배 이상 차이가 나는 문제가 있다. 따라서 본 연구에서는 2차원의 GNP 표면 위에 1차원의 CNT를 직접 성장시킨 하이브리드 탄소소재를 이용하여 이러한 열전도도 이방성을 개선하고자 하였다. 하이브리드 탄소소재는 무전해 도금법과 열기상법으로 제조하였다. 합성된 하이브리드 탄소소재 및 CNT를 단독 혹은 혼합하여 필러를 만들고 이를 에폭시 기지 내에 분산시켜 복합체를 제작하였다. 필러 함량별, 필러 비율별로 제작된 복합체의 열전도도를 레이저 플래시 법으로 측정 비교하였다. 결과적으로 기존의 단일 필러들보다 열전도도 이방성이 1.5배 이상 개선된 방열용 에폭시 복합체를 제작할 수 있었다. 한편 하이브리드 탄소와 2% 이하의 CNT 배합에서 단독 필러 투입에 비해 45% 이상의 열전도율 향상을 확인하였다. 이는 미세구조 분석 및 성분 분석 결과, 필러 분산 정도가 열전도도 향상의 주요 인자로 작용하는 것을 확인하였고 기지 내 CNT가 열전도도 경로로 작용하기보다는 하이브리드 탄소소재의 균일한 분산에 영향을 준 것으로 사료된다.

  • PDF

플라즈마 전처리를 통한 Inconel 600 합금 위 CNT 합성 수율 증대

  • Sin, Ui-Cheol;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.455-455
    • /
    • 2011
  • 탄소나노튜브(CNT)는 우수한 전기적, 화학적, 기계적 특성으로 인해 전자기술 분야에 있어서 많은 응용이 가능한 나노소재로 각광을 받고 있으며, 실질적으로 CNT를 이용하여 트렌지스터, 전계방출원, 이차 전지 등으로의 응용연구가 진행되고 있다. 일반적으로 CNT 합성을 위해 전이금속의 촉매가 필요하며 또한 촉매가 나노입자로 형성이 되어야 CNT 합성이 가능하다. 기존에는 CNT 합성기판으로 실리콘 웨이퍼 위에 완충층(buffer layer)과 촉매층을 증착하여 사용하였다. 완충층은 촉매가 기판의 내부로 확산하는 것을 막아주며, 촉매의 나노입자 형성을 원활히 함으로 고효율 합성과 구조제어를 가능하게 한다. 그러나 사용되는 완충층은 알루미나 또는 실리콘 산화막과 같은 절연막이기 때문에 CNT 고유의 우수한 전기전도도를 그대로 이용할 수 없다는 문제가 있다. 그러므로 보다 폭넓은 응용을 위해서는, 완충층의 사용없이 전기전도도가 좋은 금속기판에서 CNT를 직접 합성시키는 것이 중요하며, 이때 적절한 크기의 촉매 나노입자를 형성시키기 위한 각종 표면처리법 등이 현재까지 연구되어 왔다. 본 연구에서는 Inconel 600 합금을 합성기판으로 하여 CNT의 고효율 합성에 대하여 연구하였다. 촉매의 나노입자 형성을 위하여 고온 산화처리 및 플라즈마 이온조사처리 등을 실시하였으며, CNT의 고효율 합성에 미치는 영향을 조사하였다. 결과로서, 두 종류의 전처리를 혼합하여 처리한 Inconel 600 기판에서 높은 밀도의 미세한 나노입자가 형성되었고, CNT의 고효율 합성까지 얻을 수 있었다. 이는 Inconel 600 고유의 표면산화특성 및 플라즈마 이온조사에 따른 표면구조 변화가 그 원인으로 사료된다. 발표에서는 고효율 합성결과 및 합성기전에 대하여 보다 자세히 토의하고자 한다.

  • PDF

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Development of Intelligent IoT Exhaustion System for Bag Filter Collector (백필터 집진기의 지능형 IoT 탈진 시스템 개발)

  • Jang, Sung-Cheol;Lee, Jung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • A bag filter collector is a kind of air purifier that organizes several or dozens of filters to purify fine dust and release clean air into the atmosphere. If the bag filter length is less than 5m, the dust and fume attached to the bag filter could be effectively removed by passing the compressed air generated by the diaphragm valve through the venturi. Injectors that are more efficient and economical are urgently needed to achieve satisfactory results for long-bag exhaustion of more than 7 meters. In the case of existing domestic and foreign injectors, a number of blow tubes were dismantled during maintenance, and the injector and blow tube were combined to pose a number of problems, including inconvenience of work due to weight increase. In this study, injector flow for the development of the best use of interpretation of the coanda effect and the fourth round of industrial technology Intelligent automation of exhaustion, have been engineered energy than standard equipment. lowering costs and filter life to radically improve the commercial studies.

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

The Effects of Substrate Temperature on Properties of Carbon Nanotube Films Deposited by RF Plasma CVD (RF Plasma CVD법에 의해 증착된 카본나노튜브(CNT)의 특성에 대한 기판 온도의 영향)

  • Kim, Dong-Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • Carbon Nanotube (CNT) films were deposited with varying deposition temperature by RF plasma CVD on Fe catalysts deposited onto $SiO_2$ films grown thermally on the silicon wafer using $C_2H_2$ and $H_2$ gases. The Fe catalysts on silicon oxide film were made by RF magnetron sputtering. The grounded grid mesh cover on the substrate holder was used for depositing CNT thin films with high purity. The surface morphologies and chemical structure of deposited CNT films were characterized using SEM, Raman, XPS and TEM. It was observed that deposited CNTs films were carbon fiber type having Bamboo-like multiwall structure and CNT film grown at $600^{\circ}C$ was more dense than that at $550^{\circ}C$, but become less dense at $650^{\circ}C$.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

Characteristic of EP-MAP for Deburring of Microgroove using EP-MAP (전해-자기 복합 가공을 이용한 미세 그루브형상의 가공 특성에 관한 연구)

  • Kim, Sang Oh;Son, Chul Bae;Kwak, Jae Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.313-318
    • /
    • 2013
  • Magnetic abrasive polishing is an advanced deburring process for nonmagnetic materials and micropattern products that have non-machinability characteristics. Despite these advantages, there are some problems with using MAP for deburring. MAP has introduced geometric errors into microgrooves because of an over-cutting force caused by uncontrolled magnetic abrasives in the MAP tool. Thus, in this study, to solve this problem, an EP (electrolyte polishing)-MAP hybrid polishing process was developed for deburring microgrooves in an STS316 material. In addition, an evaluation of EP-MAP for the deburring of microgrooves was carried out by profiling the burrs. The results of the experiment showed geometric errors after the deburring process using MAP. However, in the case of EP-MAP, no geometric error was observed after the process because of the lower material removal rate in EP-MAP.

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy (나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도)

  • Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.