• Title/Summary/Keyword: 미세유로 유동

Search Result 22, Processing Time 0.026 seconds

공초점 주사현미경을 통한 미세 유로에서의 유동 가시화 (Flow Visualization in Microchannel Using Confocal Scanning Microscope)

  • 장준근;박성진;김중경;한동철
    • 한국가시화정보학회지
    • /
    • 제1권1호
    • /
    • pp.28-33
    • /
    • 2003
  • This paper presents the visualization method in which 3-dimensional(3D) microchannel flow can be detected using a confocal scanning microscope. By soft-lithography, we fabricated various Bio-MEMS(Micro Electro-Mechanical System) devices such as a disposable microchip for a flow cytometer and a micro-mixer, which have 3D structures. Injecting aqueous fluorescent solution in the microfluidic devices, we measured the flow in a steady state by the confocal scanning microscope. At first, we explain the principle of the confocal scanning microscope. And then we show the results from 3D visualization of microscopic flow structures using the confocal scanning microscope.

  • PDF

Micro-PIV 기법을 이용한 미세유로 내 두 유체 유동 측정 (Micro PIV measurements of two-fluid flows in a microchannel)

  • 성형진;김병재;류임정
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 2004
  • Micro PIV was applied to measure velocity profiles of two-fluid flows in a microchannel. In this work, the two-fluid flow of two glycerol-water mixtures was measured for three cases $(\phi=0\;and\;\phi=0.2;\;\phi=0.1\;and\;\phi=0.5;\;\phi=0\;and\;\phi=0.6)$. The flow rates of two fluids were the same. The experimental velocity profiles agreed well with numerical simulations. However, a slight deviation was found in the fluid with low concentration. Rather than the effects of the varying refractive indices inside the channel, the high velocity gradient effect was thought as the main source of the deviation.

  • PDF

미세유로의 단상 유동 및 열전달에 대한 실험적 연구 (Experimental Studies on Single Phase Flow and Heat Transfer in Microchannels)

  • 김병주;김건일
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.795-801
    • /
    • 2008
  • An experimental study has been performed on the single phase flow and convective heat transfer in trapezoidal microchannels. The microchannel was about $270{\mu}m$ wide, $800{\mu}m$ deep. and 7 mm long, which might ensure hydrodynamically fully-developed laminar flow at a low Reynolds number. The experiments were conducted with R1l3 and water, with the Reynolds number ranging from approximately 30 to 5000 for friction factor and 30 to 700 for the Nusselt number. Friction factors in laminar are found to be in good agreement with the predictions of existing correlation suggesting that a conventional analysis approach can be employed in predicting flow friction behavior in microchannels. However turbulent friction factors are hardly predictable by the existing correlations. The experimental results show that the Nusselt number is not a constant but increases almost linearly with the Reynolds number even the flow is fully developed (Re < 100). The dependence of the Nusslet number on the Reynolds number is contradictory to the conventional theory. At a Reynolds number greater than 100, the Nusselt number increases slowly with the Reynolds number, where thennally developing flow is responsible for the increase of the Nusselt number with the Reynolds number.

미세 수평 사각 유로 내에서의 비등 유동 압력강하에 관한 실험적 연구 (An Experimental Study on Pressure Drop of Boiling Flow within Horizontal Rectangular Channels with Small Heights)

  • 이상용;이한주
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1219-1226
    • /
    • 2001
  • Pressure drops were measured for the flow boiling process within horizontal rectangular channels. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2mm while the channel width being fixed to 20mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200kg/㎡s and the channel walls were uniformly heated up to 15kW/㎡. The quality range covers from 0.15 to 0.75. The present experimental conditions coincide with the operating conditions of compact heat exchangers in which the liquid and gas flows are laminar and turbulent. The measured results were well represented by the two-phase frictional multiplier of Lee (2001) which has been developed for air-water two-phase flows within the deviation of $\pm$20%.

사다리꼴 미세유로의 대류비등 2상유동 : 1부-압력강하 특성 (Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 1-Pressure Drop Characteristics)

  • 김병주;김건일
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.87-94
    • /
    • 2011
  • Characteristics of two-phase pressure drop in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having $205\;{\mu}m$ of bottom width, $800\;{\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Pressure drops in convective boiling of Refrigerant 113 were measured in the range of inlet pressure 105~195 kPa, mass velocity $150{\sim}920\;kg/m^2s$, and heat flux $10{\sim}100\;kW/m^2$. The total pressure drop generally increased with increasing mass velocity and/or heat flux. Two-phase frictional pressure drop across the microchannels increased rapidly with exit quality and showed bigger gradient at higher mass velocity. A critical review of correlations in the literature suggested that existing correlations were not able to match the experimental results obtained for two-phase pressure drop associated with convective boiling in microchannels. A new correlation suitable for predicting two-phase friction multiplier was developed based on the separated flow model and showed good agreement with the experimental data.

사다리꼴 미세유로의 대류비등 2상유동 : 2부-열전달 특성 (Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 2-Heat Transfer Characteristics)

  • 김병주;김건일
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.718-725
    • /
    • 2011
  • Characteristics of flow boiling heat transfer in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having 205 ${\mu}m$ of bottom width, 800 ${\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Tests were performed with R113 over a mass velocity range of 150~920 $kg/m^2s$, heat flux of 10~100 $kW/m^2$ and inlet pressures of 105~195 kPa. Flow boiling heat transfer coefficient in microchannels was found to be dominated by heat-flux. However the effect of mass velocity was not significant. Contrary to macrochannel trends, the heat transfer coefficient was shown to decrease with increasing thermodynamic equilibrium quality. A new correlation suitable for predicting flow boiling heat transfer coefficient was developed based on the laminar single-phase heat transfer coefficient and the nucleate boiling dominant equation. Comparison with the experimental data showed good agreement.

출구유로 단면적이 수직 환상공간 내부의 풀비등에 미치는 영향 (Effects of Outflow Area on Pool Boiling in Vertical Annulus)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.377-385
    • /
    • 2013
  • 출구유로 단면적이 수직 환상공간 내부의 풀비등 열전달에 미치는 영향을 규명하기 위하여 세 가지 서로 다른 유동제한장치를 실험적으로 연구하였다. 가열 튜브는 매끈한 표면을 가지는 스테인리스강이며 대기압 상태 하에 있는 물을 사용하였다. 환상공간의 하부유로 조건은 개방과 폐쇄된 경우 두 가지를 모두 고려하였으며 유동제한장치를 설치한 환상공간에 대한 결과를 유동제한장치가 없는 환상공간에 대한 결과와 서로 비교하였다. 출구유로 단면적을 축소하는 것은 열전달의 감소를 초래하지만, 출구 유로가 아주 작은 경우 열전달계수가 증가하는 경우도 관찰되었다. 이러한 경향은 기포군집의 형성과 이동에 따른 액체교란의 차이로서 설명되며, 유동대류, 맥동류 발생, 기포 군집 하부의 미세층증발이 중요한 열전달 기구인 것으로 확인하였다.

미세유로를 갖는 납작관의 열·유동 해석 (Thermal and Flow Analysis of the Flat Tube with Micro-Channels)

  • 정길완;이관수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.

미세 수평 사각유로에서의 2상 유동 압력강하에 관한 실험적 연구 (An Experimental Study on the Two-Phase Flow Pressure Drop Within Horizontal Rectangular Channels with Small Gap Heights)

  • 이한주;이상용
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.637-645
    • /
    • 1999
  • Horizontal two-phase flow pressure drop within rectangular channels with small gap heights have been examined experimentally. The gap heights range from 0.4mm to 4mm corresponding to aspect ratios(the channel height divided by the width) from 0.02 to 0.2. Water and air were used as the test fluids with the superficial velocity ranges being 0.03-2.39m/s and 0.05-18.7m/s, respectively. The experimental results In rectangular channels were compared with the Lockhart-Martinelli correlation, which are widely used for conventional round tube. The Lockhart-Martinelli correlation turned out to be Inappropriate to represent the present experimental data. In this respect, considering the aspect ratio and gap-height effects, an empirical correlation on two-phase flow pressure drop was proposed. The proposed correlation successfully covers the bubbly, plug, slug and annular flow regimes.