벡터 부호책 설계에 사용되는 기존 K-means 알고리즘은 모든 학습반복에서 고정된 가중치를 적용하는데 반해 제안된 방법은 학습반복마다 가변되는 가중치를 적용한다. 초기 학습반복에서는 새로운 부호벡터를 얻기 위해 수렴영역을 벗어나는 2 이상의 가중치를 사용하고, 이 값이 클수록 가변 가중치를 적용하는 학습반복을 줄임으로써 우수한 부호책을 설계할 수 있다. 초기 부호책 설계에 사용되는 미세분할 방법을 개선하기 위하여 소속 학습벡터와 대표벡터간의 오차를 줄이는 방법을 사용한다. 즉 자승오차가 최대인 대표벡터를 제외시키고 최소인 대표벡터를 미세분할함으로써 초기 부호벡터로 대체될 보다 적절한 대표벡터를 얻을 수 있다.
현재 유방암으로 인한 사망률이 급증하고 있다. 이러한 유방암의 위험성을 줄일 수 있는 치료 방법으로 수년간 많은 연구가 진행되어 왔다. 특히 마모그래피의 연장 선상이라 할 수 있는 CAD 시스템의 개발에 대한 연구가 진행 중에 있다. 미세석회화 검출에 적합한 CAD 시스템의 구현을 위해서 미세석회화를 분할하는 다양한 방법들이 연구되어 왔다. 기존의 미세석회화 분할 방법들 중에서 마모그램 영상에서 그레이 레벨 또는 컨트라스트를 임계화하는 방법을 많이 사용하고 있다. 이 방법은 간단하고 빠르다는 장점을 가지지만, 관찰하는 사람에 따라 변동성이 높다. 변동성이 크다는 단점으로 인해 다양한 마모그램 영상들에서 최적의 성능을 얻어내는 데는 한계가 있다. 본 논문에서는 관찰자에 의해서 컨트라스트 임계값을 정하는 방법이 아닌, 마모그램 영상에 따라 적응적으로 임계값을 자동적으로 설정하는 방법을 제안한다. 실험 결과를 보면 기존의 임계화 방법은 마모그램 영상마다 적합한 컨트라스트 임계값 변동이 크다. 그러나 제안된 방법은 마모그램 영상에 적합한 임계값을 찾아준다.
영상으로부터 의미있는 객체를 영역화하기 위하여, 움직임에 의한 시간적 정보를 이용하거나, 형태학적(Morphological) 기법과 같이 공간적 정보를 이용하는 방법이 있다. 그러나, 단지 시간적 정보나 공간적 정보만을 이용하는 방법은 그 한계를 가지고 있으며, 본 논문에서는 시공간 정보를 이용하여 분할하는 방법을 채택하였다. 시간적 분할에서는, 두 프레임에서 움직임 정보를 찾아내었던 기존 방법을 보완하여 연속되는 세 프레임을 사용하도록 하였다. 이렇게 하면 움직임이 미세한 영상에 대해서도 객체를 분리해 낼 가능성을 높일 수 있게 된다. 공간적 분할시에는, Watershed 알고리즘을 이용하는 형태학적 분할(Morphological Segmentation)[1][2]을 하게 되는데, 전처리 과정의 단일척도경사(Monoscale Gradient) 대신 다중척도 경사(Multiscale Gradient)[3][4]를 사용하여 미세한 경사는 누그러뜨리고 에지 부분의 경사만을 강조하게 하였다. 또한 개선된 Watershed 알고리즘을 제안하여 기존의 Watershed 알고리즘의 과분할 문제를 보완하였다.
가축의 일란성 쌍태를 생산하기 위한 기술 개발을 확립하고자 상실배 및 포배기에 있는 BALB/c 계통의 생쥐 수정란을 micromanipulator로 분할 수정란을 작출하고 이를 체외배양을 실시하여 발달성적을 조사하였으며, 외과적 및 비외과적 이식을 실시하여 착상율 및 산자생산 성적을 조사한 결과는 다음과 같다. 1. 상실배 및 포기배에 있는 총 811개의 정상적인 수정란을 분할하여 이중에서 666(82.1%)개가 분할시의 물리적인 손상이 없이 분할되었고, 이때 분할 성공율은 발달단계 간에 유의적(P<0.05)인 차이가 없었다. 2. 분할 수정란중 상실배는 30-36시간, 초기 배반포 및 확장 배반포는 3-6시간 배양을 실시한 결과 분할 수정란중 한쌍이 모두 정상적으로 배양된 것은 각각 70.0%, 80.4% 및 73.1%로써 이들 발달단계 간에 유의적(P<0.05)인 차이가 없었다. 3. 분할된 상실배와 정상적인 수정란의 이식후 수태율은 각각 63.6% 및 61.3%로써 유의적(P<0.05)인 차이가 없었다. 그러나 분할된 상실배에 있어서 배양을 하지 않고 이식한 경우에는 전혀 수태되지 않았다(P<0.05). 4. 분할된 포배기 수정란을 체외 배양후 이식한 수태율(55.5%)과 배양과정을 거치지 않고 이식한 성적(43.8%) 그리고 정상적인 포배기 수정란을 이식한 수태율(55.4%) 간에는 유의적(P<0.05)인 차이가 없었다. 5. 분할 수정란을 외과적 방법으로 이식한 경우는 52.8%의 수태율을 얻었으나, 비외과적 방법으로 이식한 경우 27.5%로써 외과적 방법으로 이식한 경우보다 수태율이 유의적(P<0.05)으로 낮았다.
당뇨망막증은 망막의 말초혈관에 순환장애가 일어나 발생하는 당뇨병의 합병증으로, 이를 진단하기 위하여 미세혈관류를 분할하였다. 기존 필터와 특징을 사용한 혈관분할은 두꺼운 혈관은 비교적 잘 분할을 하나, 미세한 혈관에 대해서는 정확도가 떨어진다는 단점이 있다. 그리하여 전처리로 노이즈 제거를 위한 필터, 영상 대비를 위한 히스토그램 평활화를 사용하였으며, 픽셀 단위 분할을 위해 딥러닝 기법을 이용하였다. 기존 방법의 정확도는 90% ~ 94%이며, 제안한 방법의 정확도는 95%이다. 결과 영상에서 시신경 유두 및 삼출몰 주변에서 분할 오류가 나타나는 문제점이 있으나, 이는 네트워크 깊이가 얕음에 의한 오류로 향후 네트워크 변경을 통해 정확도를 개선할 수 있다.
비평가인자 함수 언어는 비평가인자 어의로 인하여 기존의 von Neumann 형 병렬기에서 효율적인 수행을 어렵게 하는 미세수준의 동적 스케줄링 단위로 병합하는 과정이 중요하다. 이러한 과정을 스레드 분할이라 한다. 본 논문에서는 비평가인자 함수 프로그램을 스레드로 분할하는 자료형 분리집합 분할이라는 스레드 분할 알고리즘을 제안한다. 자료형 분리 집합 분할 알고리즘은 자료형을 비교할 수 없는 입력명과 출력명 사이에는 잠재 종속이 존재할 수 없다는 사실을 이용하여 스레드 분할을 수행한다. 이 방법을 사용하면 기존의 스레드 분할 방법에서 실패하는 스레드의 병합이 가능하며, 기존의 분할 알고리즘보다 더 큰 스레드를 생성할 수 있다.
신생아 호흡곤란증후군(RDS, Respiratory Distress Syndrome)은 미숙아 사망의 주된 원인 중 하나이며, 이 질병은 빠른 진단과 치료가 필요하다. 소아의 x-ray 영상을 시각적으로 분석하여 RDS 의 판별을 하고 있으나, 이는 전문의의 주관적인 판단에 의지하기 때문에 상당한 시간적 비용과 인력이 소모된다. 이에 따라, 본 논문에서는 전문의의 진단을 보조하기 위해 심층 신경망을 활용한 소아 RDS/nonRDS 판별 방법을 제안한다. 소아 전신 X-ray 영상에 폐 영역 분할을 적용한 데이터 세트와 증강방법으로 추가한 데이터 세트를 구축하며, RDS 판별 성능을 높이기 위해 ImageNet 으로 사전학습된 DenseNet 판별 모델에 대해 구축된 데이터 세트로 추가 미세조정 학습을 수행한다. 추론 시 입력 X-ray 영상에 대해 MSRF-Net 으로 분할된 폐 영역을 얻고 이를 DenseNet 판별 모델에 적용하여 RDS 를 진단한다. 실험결과, 데이터 증강과 폐 영역을 분할을 적용한 판별 방법이 소아전신 X-ray 데이터 세트만을 사용하는 것과 비교하여 3.9%의 성능향상을 보였다.
이미지 분석을 통한 재료의 상 구분은 재료의 미세구조 분석을 위해 필수적이다. 이미지 분석에 주로 사용되는 마이크로-CT 이미지는 대체로 재료를 구성하고 있는 상에 따라 회색조 값이 다르게 나타나므로 이미지의 회색조 값 비교를 통해 상을 구분한다. 순환골재의 고체상은 수화된 시멘트풀과 천연골재로 구분되는데, 시멘트풀과 천연골재는 CT이미지 상에서 유사한 회색조 분포를 보여 상을 구분하기 어렵다. 본 연구에서는 Unet-VGG16 네트워크를 활용하여 순환골재 CT 이미지로부터 천연골재를 분할하는 자동화 방법을 제안하였다. 딥러닝 네트워크를 활용하여 2차원 순환골재 CT 이미지로부터 천연골재 영역을 분할하는 방법과 이를 3차원으로 적층하여 3차원 천연골재 이미지를 얻는 방법을 제시하였다. 선별된 3차원 천연골재 이미지에서 각각의 골재 입자를 분할하기 위해 이미지 필터링을 사용하였다. 골재 영역 분할 성능을 정확도, 정밀도, 재현율 F1 스코어를 통해 검증하였다.
이 논문은 다양한 환경에서도 차선 검출이 가능하도록 하기 위해 각종 Edge detection algorithm을 이용하고 있다. Roberts 연산 후 이진화를 행함으로써 미세한 부분까지 예지를 얻고 있으며, 이것은 다시 영역을 분할 후 Hough transform을 행한다. 또한 기울기 및 주변 값을 이용하여 차선 인식률을 높이고 있다. 그리고, Hough transform의 단점인 시간이 오래 걸리는 단점을 해결하기 위해 이미지 크기를 축소하는 방법과 영역 분할과 같은 방법을 통해서 이를 해결하고자 한다.
본 논문에서는 뇌 CT 혈관조영영상에서 슬라이스 정보를 이용한 뇌 분할 방법을 제안한다. 뇌 분할 과정은 현재 슬라이스와 이전 슬라이스 간 분할 영역의 크기 정보를 가지고 영역 성장 단계와 전파 단계로 구분하여 수행된다. 영역 성장 단계에서는 이차원 영역성장법을 통해 뇌 분할을 수행하고 누출이 발생하는 슬라이스에 대하여 방사선 투과 기법을 통해 영역보정을 수행한다. 전파 단계에서는 이전 슬라이스에서 분할된 뇌 영역을 현재 슬라이스로 전파함으로써 장벽을 생성하고 장벽 내에서 이차원 영역성장법을 수행함으로써 누출을 최소화한다. 또한 뇌 영역과 유사한 밝기값을 형성하고 있는 미세 요소들을 제거하기 위해 이차원 연결화소군 레이블링 기법을 통해서 최종적으로 뇌 분할을 수행한다. 본 논문의 실험을 위하여 뇌 CT 혈관조영영상을 사용하여 정확한 뇌분할 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.