• Title/Summary/Keyword: 미세먼지집진

Search Result 47, Processing Time 0.022 seconds

Study of Smoking Booth Design for the Treatment of Hazardous Pollutants (유해오염물질 처리를 위한 흡연부스의 설계)

  • Kwon, Woo-Taeg;Kwon, Lee-Seung;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.107-111
    • /
    • 2017
  • The purpose of this study was to develop a Eco smoking booth that can effectively reduce hazardous pollutants generated during smoking and evaluate the efficiency and effectiveness of removing hazardous pollutants. The design and manufacture of an eco-friendly automatic smoking booth equipped with deodorizing facilities, such as inlet - HEPA filter - electrostatic precipitator (EP) - impregnated activated carbon - exhaust port, etc., and the efficiency of removing hazardous pollutants from inside and outside was measured and evaluated. The complex odor removal efficiency was 95.37% inside the smoking booth, and 97.38% at the exit of the preventive facility. The carbon monoxide removal efficiency was 94.25% in the inside and 98.32% in the outlet. In addition, the removal efficiency of particulate matter, (PM1, PM2.5, and PM10) inside the smoking booth was 98.59%, and 98.85% at the outlet. The total volatile organic compounds (TVOCs) decreased from $26,000{\mu}g/m^3$ to $5,203{\mu}g/m^3$ in the smoking booth, resulting in 79.99% removal efficiency. After the ventilator was operated, the measured effluent concentration was $5,019{\mu}g/m^3$, and the removal efficiency was 80.70%. Therefore, the smoking booth designed and manufactured through this study can be applied to the removal of harmful pollutants even in the small working environment in the future.

Characteristics of Large-area PTFE Filter Coated with PTFE Nanofiber Fabricated by Roll-to-roll Equipment (Roll-to-roll 공정으로 제조한 나노섬유가 코팅된 대면적 PTFE 필터 특성)

  • Ahn, Seunghwan;Lee, Woo Jin;Kim, Yeonsang;Shim, Euijin;Eom, Hyeonjin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.613-617
    • /
    • 2022
  • The equipment for fabricating the large-area PTFE nanofiber coated-PTFE foam filter for use as filtration parts of the baghouse that removes particulate matter (PM) in industrial sites was designed and manufactured in this study. The PTFE nanofiber was coated on a commercial PTFE foam filter to increase its PM collection efficiency. The equipment and fabrication processes using a roll-to-roll system were proposed to continuously coat PTFE nanofibers on the surface of the PTFE foam filter. The electrospinning and annealing parts were designed and made by optimizing the equipment for the roll-to-roll system. The surface morphology, composition, and filtration characteristics of the large-area filter fabricated by this equipment were confirmed. PTFE nanofibers were uniformly coated on the large-area filter, and the PTFE nanofiber coated-PTFE foam filter showed PM2.5 collection efficiency of 91.79% and an appropriate pressure drop of 62 Pa with a face velocity of 1 m/min at 280 ℃.

A Study on the Removal of Complex Odor including Acetaldehyde and Ozone Over Manganese-based Catalysts (아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구)

  • Seo, inhye;Lee, Minseok;Lee, Sooyoung;Cho, Sungsu;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-197
    • /
    • 2017
  • In this study, we report on the catalyst process installed in conjunction with a wet plasma electrostatic precipitator to remove the oil mist and fine dust emitted from large-size grill restaurants. The multi-stage catalyst module reduced odor through catalytic reaction of acetaldehyde on catalysts even at an ambient temperature with ozone as an oxidant readily produced in a wet plasma electrostatic precipitator. Two types of manganese-based catalysts, $Mn_2O_3$ and $CuMnO_x$ were fabricated by extrusion molding for structured catalysts in practical applications, and the optimum conditions for high removal efficiencies of acetaldehyde and ozone were determined. When two optimized catalysts were applied in a two-stage catalyst module, the removal efficiency of acetaldehyde and ozone were ${\geq}85%$ and 100% respectively at the space velocity of $10,000h^{-1}$ and the reaction temperature of $100^{\circ}C$.

The Study on the Optimal Operating Conditions of Direct Charging Type Electrospray for Particulate Matter Collection (미세먼지 집진을 위한 직접 하전 방식 정전분무의 최적 동작 조건에 관한 연구)

  • Sugi Choi;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.474-481
    • /
    • 2023
  • This paper is an experimental study on the optimal operating conditions of direct charging type electrospray for particulate matter collection. To perform the research, a direct charging type electrospray visualization system was configured to photograph the spray shape of microdroplets, and experiments were performed with varying electrode distance, flow rate, and applied voltage, which are the main factors affecting the particulate matter collection efficacy. Through image processing, the total number of microdroplets according to each condition was analyzed, and the number of microdroplets with a diameter of 1.5 mm or less was confirmed. In addition, by calculating the number of microdroplets per power consumption according to the applied voltage, the optimal operating conditions were derived in terms of energy consumption efficacy, and the microdroplet size distribution was analyzed under the optimal operating conditions. As a result of the experiment, it was confirmed that the optimal operating condition was at a flow rate of 10 mL/min and a voltage of -20 kV in case of 5 mm electrode distance, and at a flow rate of 15 mL/min and a voltage of -30 kV in case of 100 mm electrode distance.

Collection Characteristics of Particulate Matters from Biomass Burning by Control Devices: Mainly Commercial Meat Cooking (생물성연소에서 발생하는 미세먼지의 장치별 집진 특성: 고기구이를 중심으로)

  • Park, Seong-Kyu;Choi, Sang-Jin;Park, Geon-Jin;Kim, Jin-Yun;Bong, Choon-Keun;Park, Seong-Jin;Kim, Jong-Ho;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2011
  • The aim of this study is to understand the characteristics of exhausting particulate matters (PM) and to control emitted PM from meat cooking restaurants. We found that $PM_{2.5}$, $PM_{5.0}$ occupy 69.2% and 98.6% of total PM from pork cooking, respectively. Therefore, we can see that it is not easy to remove PM generated from a pork cooking process. The collection efficiencies of various control devices, which are a condensing scrubber, a cyclone, an impactor, an oil filter and an electrostatic precipitator (ESP), were measured and compared. ESP had the highest collection efficiency (88.6%) and condensing scrubber had the lowest one (68.0%). However, the system recovering property should be considered to choose a control device because PM from meat cooking process are extremely stickiness. Therefore, we can recommend that ESP following an impactor or a cyclone is the best combination to remove PM generated from meat cooking restaurants.

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Fabrication of Silicon Carbide Candle Filter and Performance Evaluation at High Temperature and Pressure (탄화규소 캔들형 필터의 제조 및 고온고압 하에서의 성능평가)

  • Lee, Sang-Hun;Lee, Seung-Won;Lee, Kee-Sung;Han, In-Sub;Seo, Doo-Won;Park, Seok-Joo;Park, Young-Ok;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.503-510
    • /
    • 2002
  • Silicon carbide candle filters for the pressurized fluidized bed combustion system were fabricated by extrusion process. Carbon black was added to control the porosity. Inorganic additives such as clay and calcium carbonate were added to exhibit appropriate strength. Silicon carbide layer with a finer pore size (mean pore diameter ~$10{\mu}m$) was coated on the silicon carbide support layer (mean pore diameter ~$47{\mu}m$, porosity ∼40%). After that, the filter was sintered at 1400${\circ}C$ in air. We evaluated the filtration performances of the filter at 500${\circ}C$ and $5kgf/cm^2$ of pressure. As a result, high separation efficiency, >99.999% was measured. It is expected that silicon carbide candle filter can be successfully used for the pressurized fluidized bed combustion system.