• Title/Summary/Keyword: 미생물 성장 속도

Search Result 243, Processing Time 0.036 seconds

Screening of Myxobacteria Inhibiting the Growth of Collectotrichum acutatum Causing Anthracnose on Pepper (고추탄저균 성장 억제 점액세균의 탐색)

  • Chung, Jin-Woo;Lee, Cha-Yul;Yun, Sung-Chul;Cho, Kyung-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • As an effort to search new bacterial biocontrol agents against pepper anthracnose, we screened myxobacteria, which might inhibit the growth of Colletotrichum acutatum, the agent of that plant disease. When 93 myxobacterial strains including 59 Myxococcus spp. and 34 Corallococcus spp. were tested against C. acutatum ACYSJ001 on agar plates, 10 strains identified as the genus Myxococcus significantly obstructed the growth of C. acutatum, whereas the majority of strains belonging to the genus Corallococcus did not demonstrate any counteractive effect. Such results have indicated that the strains of the genus Myxococcus have a high potential to play roles of biocontrol agents for control of pepper anthracnose. These also have revealed that the strains of the genus Myxococcus could be used as excellent microbial resources for screening novel antifungal substances.

Regulation of Tylosin Biosynthesis by Cell Growth Rate in Streptomyces fradiae (Streptomyces fradiae에서 균 성장속도에 의한 tylosin 생합성 조절)

  • 강현아;이정현;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.353-359
    • /
    • 1987
  • The aim of the present study was to investigate the effects of growth rate on the biosynthesis of tylosin in Streptomyces fradiae. In order to elucidate the relation between the growth rate and the tylosin formation rate, the activities of enzymes involved in oxaloacetate metabolism were determined using cells grown at different growth rates in chemostats. As the results, it was found that the specific rate of tylosin formation($q_{p}$) was closely related to the specific cell growth rate and the maximum value of $q_{p}$ was 1.1mg tylosin, $q_{p}$ cell, $0.013h^{-1}$ at the growth rate $0.013h^{-1}$. However further increase in the growth rate over $0.013h^{-1}$ resulted in apparent decrease of $1_{p}$. The synthesis and activities of citrate synthase, aspartate aminotransferase, and PEP carboxylase were very low at lower growth rate. On the other hand, the activity and synthesis of methylmalonyl-CoA carboxyltransferase was closely related to tylosin formation. Therefore it was concluded that tylosin formation was apparently controlled by the growth rate.

  • PDF

Effect of Ethanol Concentration on the Rates of Cell Growth and Ethanol Production in Zymomonas mobilis (발효 Ethanol농도가 Zumomonas mobilis의 균체성장과 Ethanol 생성속도에 미치는 영향)

  • ;;Rogers, P.L.
    • Korean Journal of Microbiology
    • /
    • v.23 no.2
    • /
    • pp.101-106
    • /
    • 1985
  • The effects of ethanol on the specific rates of growth and ethanol production were found to be threshold and linear inhibition. The degree of inhibition was more apparent on the specific growth rate while ethanol production was continued even the growth was ceased. The nature of uncoupling between the growth (anabolism) and ethanol production (catabolism) was clearly observed under high concentration of ethanol. The uncoupling indicated that ethanol concentration plays a great role in maintenance energy coefficient.

  • PDF

Mass Transfer Effects in Xanthan Gum Fermentation (Xanthan Gum 발효에 있어서 물질전달의 영향)

  • 임병연;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.277-282
    • /
    • 1989
  • Xanthan gum is a biopolymer produced by Xanthomonas campestris. In xanthan gum fermentation, the fermentation broth changes to highly viscous non-Newtonian fluid as xanthan gum concentration increases. Maximum xanthan gum concentration is limited by high viscosity of the broth since mass transfers of nutrient and oxygen are inhibited. Int this study the mass transfer effects were investigated in batch and fed-batch fermentations at various agitation speeds and by separate oxygen transfer experiments. Xanthan gum production rate was observed to be largely dependent on oxygen transfer coefficient; while cell growth rate was not affected highly by this factor.

  • PDF

발효조중의 세균성장에 미치는 phenol 유도체의 영향

  • 이경희;이근태
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.04a
    • /
    • pp.97.1-97
    • /
    • 1978
  • 발효에 guaicol, vanillin 및 O-V-anillin phenol 등의 유도체를 처리한 결과, yeast, Bacillus subt-ilis, Brevibacterium flavum, Pseudomonas ovalis 등의 mass, 호흡량, 성장속도 등에 미치는 영향이 크므로 발효공학에 이들 phenol 유도체를 이용하면 생산성을 향상시킬 수 있을 것으로 예상되었다.

  • PDF

Optimization of Switching Time from Growth to Product Formation for Maximum Productivity of Recombinant Escherichia coli Fermentation (유전자 재조합 대장균 발효의 최대 생산성을 위한 생육에서 제품 생성으로 전환시기의 최적화)

  • Anant Y. Patkar
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.394-400
    • /
    • 1990
  • Maximization of productivity of recombinant cell fermentations requires consideration of the inverse relationship between the host cell growth rate and product formation rate. The problem of maximizing a weighted performance index was solved by using optimal control theory for recombinant E. coli fermentation. Concentration of a growth inhibitor was used as a control variable to manipulate the specific growth rate, and consequently the cloned-gene expression rate. Using a simple unstructured model to describe the main characteristics of this system, theoretical analysis showed that the optimal control profile results in an initial high growth rate phase followed by a low growth rate and high product formation rate phase. Numerical calculations were done to determine optimal switching times from the growth to the production stage for two representative cases corresponding to different dependency of the product formation rate on the growth rate. For the case when product formation rate is sensitive to the specific growth rate, the optimized operation yields about 60% increase in the final product concentration compared with a simple batch fermentation.

  • PDF

Antimicrobial Effects of Butylated Hydroxyanisole(BHA) and Butylated Hydroxytoluene (BHT) (Butylated hydroxyanisole(BHA) 및 butylated hydroxytoluene(BHT)의 미생물 성장 억제 효과)

  • Lim, Chun-Mi;Kyung, Kyu-Hang;Yoo, Yang-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 1987
  • Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were tested for their effectiveness in inhibiting the growth of microorganisms. Among the test microorganisms, the growth of three yeasts (Saccharomyces cerevisiae, Kloeckera apiculata, Cryptococcus hungaricus), three bacteria (Bacillus subtilu, Lactobacillus cases, Escherichia colt) and two molds (Aspergillus oryzae. Penicillium sp.) was progressively decreased as concentrations of BHA were increased. A. oyzae was completely inhibited with 100ppm of BHA and a majority of the test microorganisms (S. cerevisiae, K. apiculata. C. hungaricus, B. subtilis, A. oryzae) were completely inhibited by 150 ppm of BHA. The growths of L. casei, E. coli and Penicillium sp. were not affected as much as those of other microorganisms by BHA. Final cell yiedls were becoming lower as the concentration of BHA increased. The growth of C. hungaricus and L. casci was slightly inhibited by BHT. Other microorganisms were not effected by the test concentrations of BHT.

  • PDF

Metal Corrosion Mechanism by Sulfate-reducing and Iron-oxidizing Bacteria in Saline System and its Optimal Inactivation (염수계 철산화균 및 황환원균에 의한 금속 부식 및 최적 제어 방안)

  • Sung, Eun-Hae;Han, Ji-Sun;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.798-807
    • /
    • 2008
  • Due to economic impairment derived from metal corrosion of pumping station installed around coastal area, it was needed for related cause-effect to be investigated for understanding practical corrosion behavior and providing proper control. This research was thus carried out to determine whether the microbe can influence on metal corrosion along with its control in the laboratory. For this study, groundwater was sampled from the underground pump station(i.e. I Gas Station) where corrosion was observed. Microbial diversity on the samples were then obtained by 16S rDNA methods. From this, microbial populations showing corrosion behaviors against metals were reported as Leptothrix sp.(Iron oxidizing) and Desulfovibrio sp.(Sulfur reducing) Iron oxidizing bacteria were dominantly participating in the corrosion of iron, while sulfate reducing bacteria were more preferably producing precipitate of iron. In case of galvanized steel and stainless steel, iron oxidizing bacteria not only enhanced the corrosion, but also generated its scale of precipitate. Sulfate reducing bacteria had zinc steel corroded greater extent than that of iron oxidizing bacteria. In the inactivation test, chlorine or UV exposure could efficiently control bacterial growth. However as the inactivation intensity being increased beyond a threshold level, corrosion rate was unlikely escalated due to augmented chemical effect. It is decided that microbial corrosion could be differently taken place depending upon type of microbes or materials, although they were highly correlated. It could be efficiently retarded by given disinfection practices.

BTXS Compounds Biodegradability by Pseudomonas sp. Isolated from a Bioreactor (미생물반응기에서 분리한 Pseudomonas 속 세균의 BTXS Compounds 분해 특성)

  • Cho, Young-Cheol;Jang, Hyun-Sup;Hwang, Sun-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.678-683
    • /
    • 2007
  • We isolated a toluene-degrading bacterium, TDB-4, from a bioreactor which designed to remove volatile organic compounds (VOCs) from the contaminated air. Based on the results of 16S rRNA gene analysis, it was classified as Pseudomonas sp. The toluene degradability was estimated in the variable toluene and bacterial concentrations. The bacterial growth and degradation rate was higher in the samples supplied with 50 ${\mu}mole/vial$ of toluene than with 10 ${\mu}mole/vial$. It was decreased, however, in the samples with 100 ${\mu}mole/vial$, indicating that toluene inhibit the growth or degradation activity of TDB-4 at high concentration. When the degradation ability of other compounds was examined, TDB-4 can degrade other VOCs such as styrene, benzene, and xylene. These results will be helpful to optimize the operating conditions to improve the efficiency of a bioreactor in detoxification of VOCs.

막결합형 혐기성 소화에서 무기분리막과 유기분리막의 막오염 특성 비교

  • 강인중;윤성훈;이정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.51-51
    • /
    • 1995
  • 혐기성 미생물의 특징은 성장 속도가 느리고 침강성이 좋지 않다는 점이다. 이 문제의 한 해결책인 막결합형 혐기성 소화는 고액분리를 완전하게 수행함으로써 미생물의 유출을 방지하여 반응조 내부에 미생물을 고농도로 유지할 수 있을 뿐만 아니라 에너지의 회수와 설비 면적의 축소 등 많은 장점이 있다. 이 막결합형 혐기성 소화의 경제성은 사용된 분리막의 투과 속도에 의해 크게 좌우된다. 분리막의 투과 속도에 영향을 미치는 인자로는 미생물 및 유입수를 비롯한 반응조 내부의 상태, 막모듈 압력 온도 막면유속 등의 운전 조건이 있다. 또한 사용되는 분리막 자체의 재질도 투과 유속에 큰 영향을 미친다. 본 연구의 목적은 관형의 지르코니아 스킨층과 탄소 소재 지지층으로 이루어진 복합 재료 분리막과 폴리프로필렌 분리막을 이용하여 막재질에 따른 막오염 특성을 비교 분석하고 효과적인 투과율 회복 방법을 확립하는 것이다.

  • PDF