• Title/Summary/Keyword: 미생물 변화양상

Search Result 184, Processing Time 0.029 seconds

Microcosm Study for Bioremediation of Oil-Contaminated Pebble Environments (자갈로 구성된 미소환경에서 미생물제제에 의한 유류분해)

  • Sim, Doo-Suep;Sohn, Jae-Hak;Kim, Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.101-107
    • /
    • 1998
  • Biological treatment of Arabian light crude oil-contaminated pebble was investigated in laboratory microcosms after supplementation with inorganic nutrients and oil-degrading microorganisms. Glass columns ($10cm{\times}20cm$) were used as microcosms and each microcosm was filled with pebbles of diameter less than 40 mm. After initial oil contamination of 2.4% (w/v), Inipol EAP-22 or slow release fertilizer (SRF) was added as inorganic nutrients and microorganisms were sprayed over pebbles. When $C_{17}$/pristane and $C_{18}$/phytane ratios were used as a marker for oil biodegradation, both ratios for microcosm supplemented with SRF and microorganisms were the lowest (below detectable range) after 92 days. Elimination of oil by abiotic processes, however, were minimal with decrease of $C_{17}$/pristane and $C_{18}$/phytane ratios from 3.55 and 2.41 to 3.06 and 1.50, respectively. The numbers of heterotrophic and oil-degrading microorganisms, and biological activity (dehydrogenase activity) corresponded to the course of biodegradation activities in all microcosms. During the whole experimental period, there was no significant nutrient deficiency only in the microcosm with SRF and microorganisms. It seemed that a continuous supply of inorganic nutrients using SRF was the most important factor for the successful performance of biological treatment in oil-contaminated pebbles.

  • PDF

Genetic Analysis and its Application of Rhodosprillum rubrum PKY1 Plasmid (Rhodospirillum rubrum Plasmid pKY1의 유전정보 분석과 그의 활용에 관한 연구)

  • 김복환;김정목
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • Photosynthetic bacteria, Rhodospirillum rubrum, have been reported to change their metabolic patterns depend-ing on the light condition. The genetic approach for such a metabolic change is one of main subject in pho-tosynthetic bacteria. It has been reported that the extrachromosomal plasmid might be related to this metabolic regulation. In this study, we have determined the partial sequences of R. rubrum plasmid pKYl with HindIII fragments and the predicted pKYl ORFs and physical map. We found the 8 putative proteins related to the genetic recombination of bacterium, which is reported to the alternative gene expression. Our results suggest that the genes located in pKYl are possibly involved in the metabolic switch according to the photocondition.

Changes of Microbial Community Structure According to a Changes of Season and Influent Characteristics in Biological Wastewater Treatment (생물학적 폐수처리 공정에서의 계절 및 유입수 성상 변화에 따른 미생물 군집 특성 변화)

  • Son, Hyeng-Sik;Son, Hee-Jong;Kim, Mi-A;Ryu, Eun-Yeon;Lee, Geon;Lee, Sang-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.780-786
    • /
    • 2010
  • The bacterial community structure in biological reactor in wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH). Samples were collected at different three points in wastewater treatment system. Through treatment processes, BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of was removal efficiency was 83.1~98.6%, 67.2~85.2% respectively. Microbial community of aerobic tank and oxic tank were similar but anoxic tank was different (RRP group was increased about tripple) by DGGE and FISH in sludge (2007 October and 2008 January). Samples in 2007 October and 2008 January were dominant ${\alpha}$-Proteobacteria and CF group respectively. Sludge in 2008 April were different comparing former results dominant others as 65~80%. Others group was dominant. Eubacteria by FISH with the probe EUB338 was about $1.7{\sim}7.6{\times}10^9\;cells/mL$. It could be successfully observed bacterial community in biological wastewater system.

Modeling the impact of land use change on Fecal Indicator Bacteria basin-scale transfers: assets and limitations from the SWAT model (토지이용변화에 따른 박테리아 거동 모의: SWAT 모델의 한계점과 개선점을 중심으로)

  • Kim, Min-Jeong;Jo, Gyeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.49-49
    • /
    • 2018
  • 라오스의 Houay Pano 유역은 상업적 조림으로 인해 2011년부터 2013년까지 급속한 토지이용 변화를 겪어왔다. 본 연구는 이러한 토지이용변화가 박테리아 거동에 어떠한 영향을 주는지 이해하기 위해 Soil and Water Assessment Tool (SWAT) 모형을 활용한 박테리아 거동 모델링을 수행하였다. SWAT 모형은 수치 표고 모델, 토양 특성, 토지 이용 등의 정보를 종합하여, 유역 내수량 및 수질의 변화를 모의할 수 있는 모형으로, 본 연구는 대표적인 분원성 지표 세균 (Fecal Indicator Bacteria)인 대장균 (Escheichia coli, E. coli)을 대상으로 모델링을 수행하였다. SWAT 모형은 지표면 위 박테리아를 1)식물 위, 2)토양 용액상, 3)토양 입자상으로 구분하여 모의한다. 각 상태로 분할된 박테리아는 소멸 (die-off), 씻김 (wash-off), 침투, 표면 유출을 통한 수계로의 이동 등의 단계를 통하여 유역 내에서 거동한다. 본 연구는 서로 다른 기후의 영향을 배제하기 위해 각 토지이용 시나리오를 (2011, 2012, 2013) 실제 기후 조건과 동일 기후(2011-2013 평균) 조건으로 분류하여 분석하였다. 실제 기후 조건에서 SWAT 모형은 표면 유출, 토사 유출, E. coli 거동에 대해 2011년부터 2012년까지 감소, 2012년부터 2013년까지 증가로 모두 동일한 양상을 모의하였다. 이는 강수량의 양상과 동일한 것으로, 강수량이 표면 유출의 양을 결정하고, 달라진 표면 유출에 따라 토사 유출과 E. coli 거동이 결정되기 때문이다. 하지만 동일 기후 조건에서는, E. coli 거동 동인인 표면 유출과 토사 유출이 비교적 일정해짐에 따라, 각 상태로 분할된 박테리아의 초기 부하량값이 E. coli 거동을 결정하는 주된 요인임을 확인 할 수 있었다. 따라서 초기 부하량 분할에 활용되는 엽면적 지수 (Leaf Area Index)와 분배계수 (BACTKDDB)의 정확도가 요구된다. 추가적으로 본 연구는 박테리아의 유입원인 비료 모델링과, LAI를 활용한 박테리아 초기 부하량 산정, 토양 특성 변수와 토지 이용 변수의 분리, 지하수를 통한 박테리아 거동 등을 중심으로 SWAT 모형의 한계점과 개선점을 제시하였으며, 본 연구 결과는 토지이용변화가 박테리아 거동에 주는 영향을 모형적으로 이해하고, 또한 추후 박테리아 모델링 개발에 도움을 줄 것으로 예상된다.

  • PDF

The Relationship between Water-Bloom and Distribution of Microorganisms That Inhibit the Growth of Cyanobacterium (Anabaena cylindrica) (수화와 시안세균(Anabaena cylindrica) 생장 억제 미생물 분포도의 상관관계)

  • Kim, Chul-Ho;Lee, Jung-Ho;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.188-193
    • /
    • 1998
  • The authors examined the variations of environmental factors, the distributions of cyanobacteria, heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica according to development and extinction of cyanobacterial bloom at a site in Daechung Dam reservoir. And certified the relationship between each other. Water temperature variated in a typical pattern. pH and concentrations of dissolved oxygen and chlorophylla was high in bloom period, and lowered with the decline of bloom. Phosphorus played as a growth-limiting factor at this study site. Total nitrogen concentration increased during blooming period, which indicated that nitrogen has been fixed by aquatic organisms such as cyanobacteria. Cyanobacteria distributed from June 17, and such cyanobacterial species as Anabaena spp., Aphanizomenon spp., Microcystis spp., Oscillatoria spp. and Phormidium spp. was detected during study period. Anabaena spp. distributed relatively highly distributed from July 23 to September 22, and disappeared completely at September 29. Heterotrophic bacterial and cyanobacterial populations varied inverse-proportionally. There was a relevancy between the variations of Anabaena spp., heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica. Microorganisms that inhibit the growth of Anabaena cylindrica distributed from early growth phase of Anabaena spp. population to immediately after the extinction of Anabaena spp. With the population of Anabaena cylindrica growth-inhibiting microorganisms decreasing, increases of heterotrophic bacterial population followed it. Thease results indicate that microorganisms have a part in the extinction of cyanobacterial bloom, especially at its destroying period.

  • PDF

Changes of Quality Characteristics and Nitrate Contents in Ulgari-Baechu Kimchi, Yulmoo Kimchi and Yulmoo Mul-Kimchi during Storage Period (얼갈이배추김치, 열무김치 및 열무물김치의 저장 중 품질특성 및 질산염 함량 변화)

  • Park, Young-Hee;Seo, Hae-Jeong;Cho, In-Young;Han, Gwi-Jung;Chun, Hye-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.794-799
    • /
    • 2007
  • Nitrate contents and quality characteristics of Ulgari-Baechu Kimchi, Yulmoo Kimchi, and Yulmoo Mul-Kimchi were investigated during a storage period. In case of Ulgari-Baechu Kimchi and Yulmoo Kimchi, an increase of pH and decrease of acidity were distinguished by the 4th day of the storage after fermentation. In Yulmoo Mul-Kimchi, pH value decreased and total acidity increased through the whole storage period. Total microbial and lactic acid bacterial counts of Yulmoo Kimchi and Ulgari-Baechu Kimchi reached the peak at the 4th day of storage and slowly decreased after the 18th day. Total microbial and lactic acid bacterial counts of Yulmoo Mul-Kimchi were also the highest at the 4th day of fermentation but showed gradual decreases from the same day. Nitrate contents of Ulgari-Baechu Kimchi significantly decreased by fermentation at room temperature, which continued during the whole store period to down by 11%. Showing the similar pattern in the nitrate content change, Yulmoo Kimchi and Yulmoo Mul-Kimchi recorded 12% and 5% decrease, respectively.

Storage Stability of Raw Beef, Dry-Aging Beef, and Wet-Aging Beef at Refrigeration Temperature (냉장 온도에서 생육, 습식숙성육, 건식숙성육의 저장 안전성)

  • An, Seol Bin;Hwang, Sun Hye;Cho, Yong Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.170-176
    • /
    • 2020
  • We investigated the pH, volatile basic nitrogen (VBN), microbial changes and dominant microbes in raw beef, wet-aging beef, and dry-aging beef after the meat had been stored in a refrigerator. The count of mesophilic bacteria was 3.3-3.9 log CFU/g in raw beef and dry-aging beef, and 5.4 log CFU/g in wet-aging meat. After 18 days of refrigeration, the mesophilic bacterial count in raw and aging beef increased to 6.1-6.4 log CFU/g. In wet-aging beef, the number of lactic acid bacteria increased from 4.5 log CFU/g to 6.0 log CFU/g at refrigeration temperature. However, lactic acid bacteria were not detected in dry aging beef. Major foodborne pathogens such as Salmonella spp, Listeria monocytogenes, and Escherichia coli (EHEC) were not detected. Based on the legal standard for mesophilic bacteria count, the estimated shelf-life of aged beef was less than 12 days and the average VBN was 15 mg%. The dominant microorganisms varied between the different types of meat. In raw meat, Staphylococcus saprophyticus was the dominant microorganism, and as the VBN increased, Carnobacterium divergens dominated. In wet-aging beef, Carnobacterium divergens dominated during the initial days of refrigeration after which the number of Lactobacillus sakei increased. Dermacoccus nishinomiyaensis was initially the dominant microbe in dry-aging beef, after which Pseudomonas fragi dominated. In addition to the role of specific bacteria in the early stage of decay, it is thought that microorganisms can be utilized for safe distribution and storage of matured meats by conducting research on changes in rot, fragrance analysis, and changes of ingredients in matured meats.

Effects of Brined Baechu Cabbage and Seasoning on Fermentation of Kimchi (절임 배추와 양념소가 김치 발효에 미치는 영향)

  • Yun, Ja-Young;Jeong, Ji-Kang;Moon, Suk-Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1081-1087
    • /
    • 2014
  • This study investigated and compared the fermentation characteristics of intact kimchi and brined baechu cabbage and seasoning fermented separately. Fermentation characteristics of kimchi, brined baechu cabbage and seasoning, such as pH, acidity, microbial counts, and springiness were measured during the fermentation period (4 weeks at $4^{\circ}C$). Changes in pH, acidity, and microbial counts of the seasoning fermented separately were slower than those of brined baechu cabbage and kimchi itself. The fermentation characteristics of brined baechu cabbage were very similar to those of kimchi during the fermentation period. Additionally, we manufactured and fermented kimchi, after which baechu cabbage and seasoning were separated shortly before the measurements. Baechu cabbage and seasoning separated instantly from kimchi showed similar fermentation characteristics to their separately fermented counterparts. Changes in springiness of kimchi itself and brined baechu cabbage fermented separately were similar during the fermentation period. These results indicate that kimchi fermentation is affected by brined baechu cabbage more than seasoning.

Characterization of Kimchi Fermentation Prepared with Various Salts (국내산 천일염, 수입염, 세척탈수염, 기계염 및 가공염으로 제조한 김치의 발효특성)

  • Kim Seon-Jae;Kim Hag-Lyeol;Ham Kyung-Sik
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2005
  • This study was carried out to investigate the changes in the fermentation characteristics of Kimchi prepared with various salts (Korean solar salt, Chinese solar salt, washed and dehydrated salt, purified salt and a processed salt). Acidity appeared to increase most rapidly in Kimchi prepared with Korean solar salt and reached higher level. Total microbial count slowly increased at the beginning of fermentation and reached maximum on 6 days, then decreased slowly. The number of lactic acid bacteria was rapidly increased up to $4{\sim}6$ days, and thereafter decreased slowly. In conclusion, any significant differences in fermentation characteristics analyzed was not observed in Kimchi prepared with various salts except acidity.

Changes of Microbial Activity and Physicochemical Environment during Composting of Papermill Sludge in a Pilot Plant (제지슬럿지의 퇴비화 과정 중 미생물활성 및 이화학적 환경변화)

  • Chung, Young-Ryun;Chung, Man-Hoon;Han, Shin-Ho;Oh, Say-Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.79-89
    • /
    • 1995
  • Changes of microbial activity and physicochemical environment during composting of papermill sludge(PMS) in the pilot plant equipped with an agitated bed reactor were monitored for establishing the efficient composting system. Microbial activity determined as the evolution of $CO_2$ increased for the first 10 days after introduction of PMS to the reactor and decreased thereafter. Population changes of microorganisms in the reactor-PMS were not typical as in windrow system. The ratio of thermophilic bacteria to mesophilic bacteria, however, increased slowly even 23 days after introduction. Temperature of PMS increased rapidly from the first day and reached $62^{\circ}C$ at 7 days after introduction and decreased slowly thereafter. The acidity of PMS was pH 6.8 initially, increased to pH 8.0 after 7 days and decreased to pH 7.4 after 23 days. Redox potential(Eh) of PMS was -320mV at the beginning of composting, but it was increased with time to reach -15mV after 23 days composting. However, Eh of PMS pre-sterilized before measurement was average 50mV, regardless of composting periods indicating the major role of microorganisms during composting process. Water content of PMS was 67% initially and decreased to about 50% after 23 days composting in the reactor. Less than 13 days-old compost inhibited growth of radish in the container mixture with bed soil. Based on statistical analysis of microbial and physicochemical parameters of PMS during composting, an equation was developed for determining compost maturity. A number of experiments using various organic wastes are required before application of the formular to the practical use.

  • PDF