• 제목/요약/키워드: 미분 신경망

검색결과 30건 처리시간 0.023초

미분가능 신경망을 이용한 옵션 가격결정 (Option Pricing using Differentiable Neural Networks)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.501-507
    • /
    • 2021
  • 신경망은 미분가능한 활성화 함수를 사용하는 경우에는 입력변수에 대하여 미분가능하다. 본 연구에서는 신경망의 근사 능력을 향상시키기 위하여 신경망의 그래디언트와 헤시안이 블랙-숄즈 미분방정식을 만족하도록 한다. 본 논문은 확률 미분방정식과 블랙-숄즈 편미분 방정식이 옵션 가격과 기초자산의 미분관계를 표현하는 옵션 가격결정에 제안한 방법을 사용한다. 이는 옵션 가격의 일차와 이차미분은 금융공학에서 중요한 역할을 하므로 미분 값을 쉽게 얻을 수 있는 제안한 방법을 적용할 수 있기 때문이다. 제안한 신경망은 (1) 확률 미분방정식이 생성하는 옵션가격의 샘플 경로와 (2) 각 시간과 기초자산 가격에서 블랙-숄즈 방정식을 만족하도록 학습한다. 실험을 통하여 제안한 방법이 옵션가격과 일차와 이차 미분 값을 정확히 예측함을 보인다.

다치 신경 망의 BP 학습 알고리즘을 이용한 패턴 인식 (Pattern Recognition Using BP Learning Algorithm of Multiple Valued Logic Neural Network)

  • 김두완;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.502-505
    • /
    • 2002
  • 본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.

데이터 마이닝을 이용한 아파트 초기계약 예측모형 개발: 위례 신도시 미분양 아파트 단지를 사례로 (Development of Forecasting Model for the Initial Sale of Apartment Using Data Mining: The Case of Unsold Apartment Complex in Wirye New Town)

  • 김지영;이상경
    • 디지털융복합연구
    • /
    • 제16권12호
    • /
    • pp.217-229
    • /
    • 2018
  • 이 연구에서는 미분양 아파트 단지의 세대별 계약 자료에 데이터 마이닝 기법인 의사결정나무, 신경망, 로지스틱 모형을 적용하여 세대별 초기계약을 예측하는 모형을 개발한다. 모형 개발에는 위례신도시 미분양 아파트 단지의 계약 자료가 이용되며, 이 자료는 훈련용 자료와 검정용 자료로 분할되어 분석에 투입된다. 훈련용 자료에서는 신경망, 의사결정나무, 로지스틱 모형 순으로 예측력이 뛰어났지만 검정용 자료에서는 로지스틱 모형이 가장 우수하게 나타났다. 이 같은 결과는 신경망이 훈련용 자료에 최적화된 모형으로 구축되면서 검정용 자료에 대한 적응성이 떨어져 나타난 결과로 판단된다. 의사결정나무와 로지스틱 모형을 병행 적용한 결과, 층수, 향, 세대 위치, 전기 및 발전기실의 소음, 청약자 거주지, 청약 종류가 초기계약에 영향을 주는 것으로 나타났다. 이는 두 가지 모형을 같이 사용하는 것이 초기계약 결정요인 발굴에 더 효과적이라는 것을 의미한다. 이 연구는 데이터 마이닝의 적용 범위를 주택 분양 예측까지 확장함으로써 융복합 분야 발전에 기여하고 있다.

생성적 적대 신경망(GAN)을 이용한 딥러닝 음악 장르 분류 시스템 모델 개선 (Deep Learning Music Genre Classification System Model Improvement Using Generative Adversarial Networks (GAN))

  • 배준
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.842-848
    • /
    • 2020
  • 아이튠즈, 스포티파이, 멜론 등 음악시장은 바야흐로 스트리밍의 시대로 접어들었고, 음악 소비자의 취향에 맞는 음악 선곡과 제안을 위해 음악장르 자동 구분 시스템에 대한 요구와 연구가 활발하다. 이전 논문에서 제안한 소프트 맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템을 더욱 발전시켜 생성적 적대 신경망(GAN)을 이용하여 이전 시스템의 미흡한 점이었던 장르 미분류 곡들에 대한 정확도를 높이는 방법을 제안한다. 이전 연구에서는 전체 곡을 작은 샘플 로 나누고 각각의 샘플을 CNN 분석하여 그 결과들의 총합으로 장르 구분을 하는 투표 시스템으로 곡 장르분류 정확도를 높일 수 있었다. 하지만 곡의 스펙트로그램이 곡의 장르를 파악하기에 모호한 곡의 경우에는 미분류 곡으로 남겨놓을 수밖에 없었다. 이 논문에서는 생성적 적대 신경망을 이용하여 미분류 곡의 스펙트로그램을 판독하기 쉬운 장르의 스펙트로그램으로 바꾸어 미분류 곡의 장르 구분 정확도를 높이는 시스템을 제안하고 그 실험결과 기존 방식에 비해 우수한 결과를 도출해낼 수 있었다.

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

할선법과 모멘트에 의한 신경망 기반 독립성분분석 (Independent Component Analysis Based on Neural Networks Using Secant Method and Moment)

  • 오정은;김아람;조용현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.325-329
    • /
    • 2002
  • 본 연구에서는 할선법과 모멘트를 조합한 학습알고리즘의 신경망 기반 독립성분분석 기법을 제안하였다. 제안된 알고리즘은 할선법과 모멘트에 기초를 둔 고정점 알고리즘의 독립성분분석 기법이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위해 negentropy를 최대화는 과정에서 요구되는 1차 미분에 따른 계산량을 줄이기 위함이고, 모멘트는 최대화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 256×256 픽셀의 8개 지문영상에서 임의 혼합행렬에 따라 발생되는 혼합지문들을 각각 대상으로 시뮬레이션한 결과, 할선법만에 기초한 기법보다 우수한 분리성능과 빠른 학습속도가 있음을 확인하였다.

  • PDF

물리정보신경망을 이용한 파동방정식 모델링 전략 분석 (Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks)

  • 조상인;최우창;지준;편석준
    • 지구물리와물리탐사
    • /
    • 제26권3호
    • /
    • pp.114-125
    • /
    • 2023
  • 편미분방정식의 해를 구하기 위한 여러 수치해법들의 한계와 순수 데이터 기반 기계학습의 단점을 극복하기 위해 물리정보신경망(physics-informed neural network, PINN)이 제안되었다. 물리정보신경망은 편미분방정식을 손실함수 구성에 직접 활용하여 기계학습 훈련에 물리적 제약을 주는 기법으로 파동방정식 모델링에도 활용될 수 있다. 그러나 물리정보신경망을 이용하여 파동방정식을 풀기 위해서는 신경망 훈련 시 입력에 대한 2차 미분이 수행되어야 하고, 그 결과로 출력되는 파동장은 복잡한 역학적 현상들을 포함하고 있어 섬세한 전략이 필요하다. 이 해설 논문에서는 물리정보신경망의 기본 개념을 설명하고 파동방정식 모델링에 활용하기 위한 고려사항들에 대해 고찰하였다. 이러한 고려사항에는 공간좌표 정규화, 활성함수 선정, 물리손실 추가 전략이 포함된다. 훈련자료의 공간좌표를 정규화한 후 사용하면 파동방정식 모델링을 위한 신경망 훈련에서 초기 조건이 더 정확하게 반영되는 것을 수치 실험을 통해 보였다. 또한 신경망을 통한 파동장 예측에 가장 적절한 활성함수를 선정하기 위해 여러 함수들의 특성을 비교했다. 특성 비교는 각 활성함수들의 입력자료에 대한 미분과 수렴성을 중심으로 이루어졌다. 마지막으로 신경망 훈련 중 손실함수에 물리손실을 추가하는 두가지 시나리오의 결과를 비교하였다. 수치 실험을 통해 훈련 초기부터 물리손실을 활용하는 전략보다 초기 훈련단계 이후부터 물리손실을 적용하는 커리큘럼 기반 학습전략이 효과적이라는 결과를 도출했다. 추가로 이 결과를 물리손실을 전혀 사용하지 않은 훈련 결과와 비교하여 PINN기법의 효과를 확인하였다.

XY 테이블의 신경망제어 (Neuro-controller for a XY positioning table)

  • 장준오
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.375-382
    • /
    • 2004
  • 신경회로망을 이용한 XY 테이블의 비선형 보상기법을 제안한다. 제안된 신경망 제어기는 시스템의 비선형 성분에 의한 성능저하를 보상하는 신경회로망과 시스템의 안정화를 위한 비례미분(PD) 제어기로 구성된다. 신경망 보상 구조가 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 신경망 파라미터 동조알고리듬과 안정도 증명을 제시한다. 신경망 제어기를 위치 테이블에 실험함으로써 비선형 성분에 의한 성능저하를 줄이는 효과를 보여준다.

신경망 기반 독립성분분석을 위한 효율적인 학습알고리즘 (An Efficient Learning Algorithm for Independent Component Analysis Based on Neural Networks)

  • 박용수;조용현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (하)
    • /
    • pp.1037-1040
    • /
    • 2002
  • 본 연구에서는 효율적인 학습알고리즘을 가지는 신경망 기반 독립성분분석 기법을 제안하였다. 제안된 기법은 할선법에 기초를 둔 fixed point 알고리즘의 신경망 기반 독립성분분석 기법이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위해 negentropy를 최대화는 과정에서 요구되는 1차 미분에 따른 계산량을 줄이기 위함이다. 제안된 기법을 500개의 데이터를 가지는 4개 신호들로부터 임의의 혼합 행렬에 따라 발생되는 혼합신호들을 각각 대상으로 시뮬레이션 한 결과, 우수한 분리성능과 빠른 학습 속도가 있음을 확인하였다.

  • PDF

얼굴의 움직임을 이용한 다중 모드 인터페이스에서의 응시 위치 추출 (Gaze Detection Using Facial Movement in Multimodal Interface)

  • 박강령;남시욱;한승철;김재희
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1997년도 한국감성과학회 연차학술대회논문집
    • /
    • pp.168-173
    • /
    • 1997
  • 시선의 추출을 통해 사용자의 관심 방향을 알고자하는 연구는 여러 분야에 응용될 수 있는데, 대표적인 것이 장애인의 컴퓨터 이용이나, 다중 윈도우에서 마우스의 기능 대용 및, VR에서의 위치 추적 장비의 대용 그리고 원격 회의 시스템에서의 view controlling등이다. 기존의 대부분의 연구들에서는 얼굴의 입력된 동영상으로부터 얼굴의 3차원 움직임량(rotation, translation)을 구하는데 중점을 두고 있으나 [1][2], 모니터, 카메라, 얼굴 좌표계간의 복잡한 변환 과정때문에 이를 바탕으로 사용자의 응시 위치를 파악하고자하는 연구는 거으 이루어지지 않고 있다. 본 논문에서는 일반 사무실 환경에서 입력된 얼굴 동영상으로부터 얼굴 영역 및 얼굴내의 눈, 코, 입 영역 등을 추출함으로써 모니터의 일정 영역을 응시하는 순간 변화된 특징점들의 위치 및 특징점들이 형성하는 기하학적 모양의 변화를 바탕으로 응시 위치를 계산하였다. 이때 앞의 세 좌표계간의 복잡한 변환 관계를 해결하기 위하여, 신경망 구조(다층 퍼셉트론)을 이용하였다. 신경망의 학습 과정을 위해서는 모니터 화면을 15영역(가로 5등분, 세로 3등분)으로 분할하여 각 영역의 중심점을 응시할 때 추출된 특징점들을 사용하였다. 이때 학습된 15개의 응시 위치이외에 또 다른 응시 영역에 대한 출력값을 얻기 위해, 출력 함수로 연속적이고 미분가능한 함수(linear output function)를 사용하였다. 실험 결과 신경망을 이용한 응시위치 파악 결과가 선형 보간법[3]을 사용한 결과보다 정확한 성능을 나타냈다.

  • PDF