• Title/Summary/Keyword: 미래기후

Search Result 1,272, Processing Time 0.025 seconds

Forecasting of Sea-Level Rise using a Semi-Empirical Method (반경험식법을 이용한 미래 해수면 상승 예측)

  • Kim, Tae-Yun;Cho, Kwang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we predicted sea-level rise for RCP 4scenarios(RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5). To calculate sea-level rise, a semi-empirical method was used and it needs atmospheric temperature rise for each scenario. According to the results, the sea-level has been rising steadily in all scenarios. By 2050 the maximum difference of sea-level rise between the scenarios was within 0.08 m, but its difference was showed more than 0.5 m in 2100. The values of sea-level rise for RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5 scenarios are 0.87 m, 1.21 m, 1.02 m, 1.36 m, respectively. In the case of RCP 8.5, the slope of atmospheric temperature rise since 2060 was very steep compared to the other scenarios so that the maximum difference of sea-level rise between the scenarios will be much larger after 2100. Estimated by a simple approximation, the maximum difference of sea-level rise can be more than 1.2 m in 2120.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Diversification on Fund Management for Sustainable Growth and Support of New Growth Engine Industries (신성장동력산업의 지속적인 육성 및 지원을 위한 펀드 운영방안의 다각화)

  • Lee, Suk-Jun;Ko, Hyoung-Il;Jeong, Suk-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.4
    • /
    • pp.717-737
    • /
    • 2010
  • In the face of climate changes and economic crisis, nations across the world spare no efforts to identify new growth engine industries and lift the domestic economy by promoting green technologies and tightening environmental regulations. The Korean government also tries to create and promote new growth engine industries. As part of these efforts, it launched the New Growth Engine Fund in 2009, a private and public initiative to support small- and medium-sized companies that own promising new green technologies. However, it has a limitation on making investment in the fund due to the global economic crisis, the significant size of necessary capital investment and the difficulty of finding investment companies. The lukewarm response of the private sector arose a need to change the fund management method. Against this backdrop, this paper aims to propose efficient strategies of managing various funds such as cooperation fund between the central and local governments, incubator fund financed by the government and financial institutions and win-win cooperation fund for the government, large companies and partners as a means of developing and supporting new growth engine industries in a sustainable way. The importance of this research lies with the proposition of various funds that can be used to implement the government's strategic goal of developing new growth engine industries.

  • PDF

A Study on the Improvement of Evaluation System for Implementation of National Forest Management (국유림경영계획 실행평가 제도 개선방안에 관한 연구)

  • Kim, Damin;Lim, Chul-Hee;Lee, Woo-Kyun;Song, Cholho
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.640-648
    • /
    • 2015
  • National forests have been assumed to do a leading role in carbon sequestration and creating forest resources since society demanded it due to climate change. Therefore, it is needed to check whether a national forest management plan and its evaluation are implemented effectively. As an effective planning and management is to be ensured on the basis of proper evaluation system, this research suggests to improve the evaluation system by analyzing it theoretically. Improvements for national forest management plan and its evaluation are as follows: (1) adjusting evaluation goal and time; (2) giving weighting to each work when planning; (3) writing details of change in planning and its grounds; (4) using the national forest management information systems to integrate these evaluation methods and result. Since to predict future changes in forests and achieve sustainable forest management begins at the reliable evaluation for overall process of the implemented project, the significance of this study is in proposing the improvement of evaluation system for national forest.

Correlation Analysis of Forest Fire Occurrences by Change of Standardized Precipitation Index (SPI 변화에 따른 산불발생과의 관계 분석)

  • YOON, Suk-Hee;WON, Myoung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.14-26
    • /
    • 2016
  • This study analyzed the correlation between the standardized precipitation index(SPI) and forest fire occurrences using monthly accumulative rainfall data since 1970 and regional fire occurrence data since 1991. To understand the relationship between the SPI and forest fire occurrences, the correlations among the SPI of nine main observatory weather stations including Seoul, number of fire occurrences, and log of fire occurrences were analyzed. We analyzed the correlation of SPI with fire occurrences in the 1990s and 2000s and found that in the 1990s, the SPI of 3 months showed high correlation in Gyeonggi, Gangwon, and Chungnam, while the SPI of 6 months showed high correlation in Chungbuk, and the SPI of 12 months showed high correlation in Gyeongnam, Gyenongbuk, Jeonnam, and Jeonbuk. In the 2000s, the SPI of 6 months showed high correlation with the fire frequency in Gyeonggi, Chungnam, Chungbuk, Jeonnam, and Jeonbuk, whereas the fire frequency in western Gangwon was highly correlated with the SPI of 3 months and, in eastern Gangwon, Gyeongnam, and Gyenongbuk, with the SPI of 1 month. In the 1990s, distinct differences in the drought condition between the SPI of 3 months and 12 months in the northern and southern regions of Korean Peninsula were found, whereas the differences in both the SPI of 1 month and 6 months were found in the Baekdudaegan region except western Gangwon since the 2000s. Therefore, this study suggests that we can develop a model to predict forest fire occurrences by applying the SPI of 1-month and 6-month data in the future.

Identification of yearly variation in Hwacheon dam inflow using trend analysis and hydrological sensitivity method (경향성 분석과 수문학적 민감도 기법을 이용한 화천댐 유입량의 연별 변동량 규명)

  • Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.425-438
    • /
    • 2018
  • Existing studies that analyze the causes and effects of water circulation use mostly rainfall - runoff models, which requires much effort in model development, calibration and verification. In this study, hydrological sensitivity analysis which can separate quantitatively the impacts by natural factors and anthropogenic factor was applied to the Hwacheon dam upper basin from 1967 to 2017. As a result of using various variable change point detection methods, 1999 was detected as a statistically significant change point. Especially, based on the hydrological sensitivity analysis using 5 Budyko based functions, it was estimated that the average inflow reduction amount by Imnam dam construction was $1.890\;billion\;m^3/year$. This results in this study was slightly larger than the those by existing researchers due to increase of rainfall and decrease of Hwacheon dam inflow. In future, it was suggested that effective water management measures were needed to resolve theses problems. Especially, it can be suggested that the monthly or seasonal analysis should be performed and also the prediction of discharge for future climate change should be considered to establish resonable measures.

A Study on the Distribution of Heavy Metal Elements in Arc Welding Fume (아크용접 Fume의 중금속 분포에 관한 연구)

  • 채현병;김정한
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.343-343
    • /
    • 1999
  • 아크용접은 산업전반에 걸쳐 그 생산기반에 없어서는 안될 필수기술로써 자동차 및 조선, 항공우주산업에 이르기까지 경제기반에 미치는 파급효과가 매우 크다. 그러나 이 아크용접을 하게 되면 각종 가스와 미세입자로 이루어진 흄이 발생하게 되는데 이들은 작업자들의 건강에 많은 영향을 미치는 것으로 보고되어 있다. 용접흄에는 용접재료 및 용접공정에 따라 다양한 유해원소가 포함되어 있고 그 종류에 따라 인체에 미치는 잠재적 독성효과도 매우 광범위하다. 최근 국내에서는 용접사들 중에 용접흄에 포함된 중금속 중 Mn중독에 의한 파킨스씨병 환자들과 Cr중독에 의하여 콧속 연골에 구멍이 뚫리는 비중격천공(鼻中隔穿孔) 환자들이 직업병으로 판정 받아 산재요양이 승인된 사례가 있다. 이러한 계기로 인하여 용접사들의 용접기피 현상이 심화되고 작업환경에 대한 법적규제는 선진 외국뿐만 아니라 국내에서도 한층 엄격하게 강화되고 있는 실정이다. 따라서 이제는 작업자와 사용자 모두 용접흄에 대한 인식의 전환이 요구되는 때이며 여러 분야에서 이러한 용접흄에 대한 연구가 활발히 진행되어야 한다. 해외에서는 이미 용접흄에 대한 연구가 활발히 진행되어 왔으나 국내의 경우는 매우 미비한 상태이며 용접산업의 미래 영향력이나 필요성을 고려할 때 국내에서도 적극적인 관심을 가져야 할 부분으로 판단된다. 본 연구에서는 아크용접공정에서 발생하는 흄의 특정 중금속 성분이 인체에 치명적인 악영향을 미치는 것에 착안하여 여러 종류의 용접재료에서 발생되는 용접흄의 중금속 분포를 조사하여 비교하였다. 이것은 향후 용접재료별 및 용접공정별 발생되는 흄의 유해원소를 저감시킬 수 있고 또한 각종 유해원소의 노출기준 및 평가기준을 마련할 수 있는 기초data로써 도움이 되리라 사료된다.동, 공정중재고가 줄어드는 결과를 보였고, 가동률 수준이 높을수록 ORR 방법간의 차이가 크게 나타났다. 그리고 부하평준화 기능은 Order Release 정책의 유효성에 별 영향을 주지 않는 것으로 나타났다. 결론적으로, Order Release 방법은 우선순위규칙간의 성능차이를 줄이거나, 대체할 수 통제 기법이라기보다는 우선순위규칙을 보완하여 공정중재고와 작업현장에서의 리드타임, 리드타임의 편차를 줄여주는 역할을 한다고 볼 수 있다. 그리고, 계획시스템이 존재하여 계획오더가 일정기간간격으로 이송되는 환경에서 특히 유용하다는 결론을 얻었다. 알 수 있었다. 것인데, 제조업에서의 심각한 고비용, 저효율 문제 를 해결하기 위해 필수적으로 도입해야만 하는 실정이다. 또한 소비자의 다양한 요구로 인 하여 제품의 종류와 사양면에서 심한 변동을 보이는 시장 수요에, 신속한 정보처리로 대응 하는데도 크게 기여하고 있다. 이에 본 연구에서는, 자동차 Job Shop의 동기화 생산방식을 지원하는 동기화 생산시스템의 구축 모델을 제시하고자 한다.과로 여겨지며, 또한 혈청중의 ALT, ALP 및 LDH활성을 유의성있게 감소시키므로서 감잎 phenolic compounds가 에탄올에 의한 간세포 손상에 대한 해독 및 보호작용이 있는 것으로 사료된다.반적으로 홍삼 제조시 내공의 발생은 제조공정에서 나타나는 경우가 많으며, 내백의 경우는 홍삼으로 가공되면서 발생하는 경우가 있고, 인삼이 성장될 때 부분적인 영양상태의 불충분이나 기후 등에 따른 영향을 받을 수 있기 때문에 앞으로 이에 대한 많은 연구가 이루어져야할 것으로 판단된다.태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(min

  • PDF

The Effects of Elevated Atmoshpheric CO2 on Chemical Weathering of Forest Soils (대기 중 이산화탄소의 증가가 산림 토양의 화학적 풍화작용에 미치는 영향)

  • Oh, Neung-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.169-180
    • /
    • 2014
  • Chemical weathering of forest soils can reduce atmospheric $CO_2$ concentration over geologic time scales, providing many essential elements for life. Although many studies have been conducted on the effects of elevated atmospheric $CO_2$ on forest carbon storage using open top chambers and FACE (Free air $CO_2$ enrichment) facilities since the 1990s, studies on chemical weathering of forest soils under elevated $CO_2$ are relatively rare. Here I review on how elevated atmospheric $CO_2$ can affect the chemical weathering of forest soils and suggest directions on future research. Despite the recent advances in chemical weathering of forest soils under elevated atmospheric $CO_2$, it is still not clear how the large volume of forest soils would react under the condition. Future studies on weathering of forest soils covering large areas from the tropics to the polar regions with carefully monitored pre-treatment data would provide key information on how soils, the Earth's life sustaining engine, change under climate change.

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

A Study on Modeling of Watering Control status by Regions Using the Measurement Device of the Ministry of Root Environment (근권 환경부 측정장치를 이용한 지역별 관수제어 모델링 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 2021
  • According to the World Agricultural Productivity Report, the current annual average growth rate of agriculture is 1.63%, which is lower than 1.73% to support the world's 10 billion people, which is growing by 2050. The demand for food, feed, and bioenergy is not growing enough to continue to meet the demand, and it is predicting a future food shortage. The purpose of this study was to create a regional irrigation control model for the purpose of reducing the production cost of crops, increasing production, and improving quality, and presenting a model that can give advice to farmers who start farming in the region. The irrigation control modeling presented in this study means to represent the change of medium weight·supply liquid·drainage amount due to changes in the root zone environment according to the passage of time and climate in a graph model. For water control modeling, we collected data on the change in the amount of the root zone environment and the weight of the badge·supply amount·drainage amount from March to June in Nonsan, Buyeo, and Yesan regions in Chungnam Province through the measuring device of the Ministry of Environment in the root region. We set up the parameters for derivation and derived an irrigation control model that can confirm the change in weight·supply liquid·drainage amount over time through the parameters.