• Title/Summary/Keyword: 미끄럼속도

Search Result 96, Processing Time 0.032 seconds

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.

윤활시스템에서 마모메카니즘에 미치는 물리화학적 영향에 관한 연구

  • 최웅수;권오관;문탁진;유영홍
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.06a
    • /
    • pp.28-30
    • /
    • 1988
  • 윤활시스템에서 마모는 상대적인 운동을 하는 두 물체사이에서 표면상태, 접촉조건 및 분위기등의 제요소들에 의해 발생되며, 형태학적으로 scuffing, scoring, pitting 및 fretting 등으로 분류된다. 윤활조건의 특성에 따라 미끄럼 접촉에서는 mild wear, severe wear로 구분되며, 이들의 마모 생성기구의 차이는 접촉상대속도, 하중 및 표면조도등의 정도에 기인된다. mild wear에서 severe wear 영역으로 전이될 때의 가혹한 조건에서 생성되는 마모현상을 scuffing wear라 하며, 이는 접촉면에서의 표면돌기의 직접접촉에 의한 cold welding 현상, 즉 local welds의 특성을 지닌 마멸형태로 정의한다. 이의 생성은 접점간의 하중 및 미끄럼 속도가 증가됨에 따라 온도상승에 기인되어 순간적으로 발생된 마찰열이 그 원인이 있으며, 기어, cam 및 tappet, 피스톤링 및 실린더 라이너 등의 마멸현상이 대표적인 예이다.

  • PDF

Estimation of the Absolute Vehicle Speed using the Fifth Wheel (제 5바퀴속도와 비교한 차량절대속도 추정 알고리즘)

  • 황진권;송철기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2003
  • Vehicle acceleration data from an accelerometer and wheel speed data from standard, 50-tooth antilock braking system wheel speed sensors are used to estimate the absolute longitudinal speed of a vehicle. We develop the four velocity estimation algorithms. And we compare experimental results with the Butterworth filtered speed from the fifth wheel and find that it is possible to estimate absolute longitudinal vehicle speed during a hard braking maneuver lasting three seconds.

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.

Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error (가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정)

  • 황진권;송철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

An Antilock Brake Controller Design Using Hardware In-the Loop Simulation (Hardware In-the Loop Simulation을 이용한 미끄럼방지 제동제어기의 설계)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Hwang, Don-Ha;Lee, Se-Han;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2320-2322
    • /
    • 2004
  • 전자제어식 미끄럼방지 제동장치 (ABS, Antilock Brake System)는 차량의 급제동시 발생할 수 있는 바퀴의 슬립을 방지하여 차량의 제동거리를 단축시키고 주행 성능을 향상시키는 차량 내 안전장치이다. 지난 몇 년 동안 공압식 제동시스템을 사용하는 대형차량에 적합한 미끄럼방지 제동 제어기를 연구해 왔다. 이 제어기는 바퀴의 슬립율과 그 변화량을 이용한 제어 법칙을 유도하여, 제어 파라미터로 사용하고 있다. 이러한 제어 파라미터의 튜닝에는 맡은 반복적인 실험이 요구된다. 이러한 요구에 부응하기 위하여 차량의 제동을 실시간으로 모사 할 수 있는 HILS (Hardware In-the Loop Simulation) 시스템을 개발, 구축하였다. 개발 HILS는 공압식 브레이크 시스템 및 14 자유도를 가지는 차량 동역학 모델 및 타이어-바퀴 동역학을 소프트웨어 모델로 사용하고, 개발 중인 전자제어식 미끄럼 방지 제동 제어기를 하드웨어로 사용하여, 바퀴속도 센서 신호 모의 장치 및 공압 엑추에이터 모의 신호등의 인터페이스 장치를 사용하여 제동중인 차량의 상태를 실시간으로 시뮬레이션 및 감시할 수 있다. 이 개발 HILS를 이용하여 제동 제어기의 제어 파라미터의 튜닝을 짧은 시간에 성공적으로 끝낼 수 있었을 뿐만 아니라, HILS 실험을 마친 제어기는 미끄럼 방지 제동 시험장에서 실차 주행 시험을 무사히 마침으로써, 개발 기간과 비용을 절감할 수 있는 하드웨어를 이용하는 시뮬레이션의 효용성을 간접적으로 증명하였다.

  • PDF

NUMERICAL STUDY OF WEDGE FLOW IN RAREFIED GAS FLOW REGIME USING A SLIP BOUNDARY CONDITION (희박기체 영역에서 미끄럼 경계조건을 적용한 쐐기 형상 주위의 유동 해석)

  • Choi, Y.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • For rarefied gas flow regimes, physical phenomena such as velocity slip and temperature jump occur on the solid body surface. To predict these phenomena accurately, either the Navier-Stokes solver with a slip boundary condition or the direct simulation Monte Carlo method should be used. In the present study, flow simulations of a wedge were conducted in Mach-10 flow of argon gas for several different flow regimes using a two-dimensional Navier-Stokes solver with the Maxwell slip boundary condition. The results of the simulations were compared with those of the direct simulation Monte Carlo method to assess the present method. It was found that the values of the velocity slip and the temperature jump predicted increase as the Knudsen number increases. Also, the results are comparatively reasonable up to the Knudsen number of 0.05.

Sliding Wear Behavior of Carbon Steel in changing Sliding Speed (Effects of Mild Wear Mode Test on subsequent Severe Wear Behavior) (미끄럼 속도변화에 따른 철강재료의 미끄럼 마모거동 (중마모 거동에 미치는 연마모 도입시험의 영향))

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • In this study, the effect of the pre-mild wear mode test condition on the subsequent severe wear behavior of carbon steel has been investigated when the wear mode is varied according to the sliding speed change during sliding contact. Two sliding speeds of 0.3 m/s and 3 m/s for the mild wear mode test have been chosen and a sliding speed of 1 m/s for the severe wear mode test. A mild wear mode test at two different sliding speeds has been carried out during the severe wear mode test and total sliding distance of the mild wear mode test has been changed at this time. As a result, it could be found that the wear rate of carbon steel under the severe wear mode test after performing a pre-mild wear mode test is significantly reduced, compared with that before performing. However, its wear rate was slightly higher than that under the mild wear mode test. Oxides produced during the pre-mild wear mode test have been found to play a significant role in reducing the wear rate under the subsequent severe wear mode test. In particular, it was found that the effect of a pre-mild wear mode test performed at the sliding speed of 3 m/s has more rapid and the reduction in the wear rate was greater than thst at the sliding speed of 0.3 m/s.

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (1) - Effect of Sliding Speed on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (1) - 미끄럼 속도의 영향 -)

  • Lee, Kwang-Jin;Kim, Kyun-Tak;Kim, Yeong-Sik
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.351-355
    • /
    • 2011
  • Al/SiC composites were fabricated by thermal spray process, and the dry sliding wear tests were performed using the various sliding speed of 10, 30, 60 and 90 RPM through 1000 cycles. The applied load was 10 N and radius of wear track was 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS). In the case of sliding speed of 10 RPM, adhesive wear behavior caused by plastic deformation of composits surface was observed. In the cases of sliding speed of 30, 60, 90 RPM, abrasive wear behavior on the adhered layer formed by debris were observed. Through this study, it was found that the wear behavior of Al/SiC composites was mainly influenced by the sliding speed.