• Title/Summary/Keyword: 미국 광산국

Search Result 2, Processing Time 0.068 seconds

The Ways of Improving Technical Standards to Increase Effectiveness of Wetting Agent (침윤소화약제의 효과성 증대를 위한 기술기준 개선방안)

  • Jang, Kwan Su;Kim, Jung Min;Cho, Young Jae
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.581-588
    • /
    • 2022
  • Purpose: This study is about offering ways of improving existing technical standards in order to propose how to deal with coal deep-seated fire and to increase effectiveness of wetting agent. Method: This study conducts infiltration experiment using eight tons of coal, three types of wetting agents and fire water. And this study analyzes domestic and international technical standards, overseas experimental cases. Result: It is found that two findings are identified; one is fire water cannot infiltrate into the coal due to high level of surface tension, and the other is three types of wetting agent can infiltrate into the coal to the depth of 5~25cm. Also, domestic wetting agent technical standards include measuring surface tension only and testing wood on extinguishing capacity test. On the other hand, this study found that deep-seated fire experiment using cotton, B-class fire test using heptane are used from abroad. Besides it is analyze that capillary rise test, sink test, contact angle measurement are conducted to increase effectiveness of wetting agent at the U.S. Bureau of Mines. Conclusion: Based on standards and cases of U.S. NFPA and Bureau of Mines, this study suggests that domestic technical standards should include adding a new test standard which measures infiltration directly.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.