• Title/Summary/Keyword: 물 재활용

Search Result 567, Processing Time 0.029 seconds

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.

The Chemical Composition and Ruminal Dry Matter Digestibility of Leaves+Stems, Leaves, Stems and Roots of Aralia cordata Thunberg as a Roughage Sources (조사료원으로서 땅두릅(Aralia cordata Thunberg) 잎+줄기, 잎, 줄기 및 뿌리의 화학적 조성 및 반추위내 건물소화율)

  • Kim, Yong Ik;Lee, Hyung Suk;Kim, Yong Kook
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.58-64
    • /
    • 1999
  • The chemical composition and ruminal dry matter digestibilities of leaves, stems and roots of Aralia cordata Thunberg were determined and compared each other as a roughage sources for ruminants. The crude protein contents were higher for leaves(12.4%) than for leaves+stems (9.7%), stem(5.1%) and roots (3.8%) (P<0.05). The crude fat contents were higher for leaves (3.7%) than for roots (2.1%) and stems (1.3%) (P<0.05). The crude fiber contents were lower for roots (12.3%) than for leaves (15.0%), leaves+stems (27.7%) and stems (40.3%) (P<0.05), respectively. The contents of neutral detergent fiber were lower for leaves (30.2%) than for leaves+stems (42.0%), roots (50.8%) and stems (60.0%) (P<0.05), respectively. The contents of acid detergent fiber were lower for root(18.3%) than for leaves(21.4%). leaves+stems (37.5%) and stems (49.6%) (P<0.05), respectively. The calcium content of leaves(2.4%) were higher than those of stems and roots (0.97% and 0.69%), however the phosphorus contents were similar among leaves, stems and roots(0.25%, 0.19% and 0.35%). Ruminal dry matter digestibilities for 12, 24, 48 and 72hr of leaves(38.9%, 65.9%, 79.8% and 82.4%) and roots(38.9%, 59.8%, 77.6% and 78.5%) were higher than stems(31.1%, 44.1%, 49.5% and 52.6%). Furthermore the digestibilities of leaves were higher than those of alfalfa hay(37.4%, 48.8%, 67.8% and 71.8%) and although the digestibilities of stems which were the lowest among the parts were higher than those of acasia wood chip(12.6%, 18.2%, 21.6% and 24.3%).

  • PDF

Evaluation of Lead, Copper, Cadmium, and Mercury Species in the Leachate of Steel Making Slag by Seawater (해수에 의한 제강 슬래그의 납, 구리, 카드뮴 및 수은 화합물의 용출특성 평가)

  • Lee, Han-Kook;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.75-84
    • /
    • 2005
  • The aim of this study is to evaluate the leaching characteristics of lead, copper, cadmium, and mercury from steel making slag by seawater. To demonstrate the leaching characteristics of heavy metals from steel making slag by seawater, it was carried to various leaching tests such as regular leaching tests, liquid/sold(LS) leaching test and pH static test. From the leachability of $Pb^{+2},\;Cu^{+2},\;and\;Cd^{+2}$ from steel making slag in pH static test, it is distinguished between distilled water and seawater. With distilled water, it is very low between pH 7-8 and pH 11-12. On the other hands, with the seawater, its leaching is higher than that of distilled water. In particular, concentration of $Hg^{+2}$ leached from slag by seawater is lower than that of distilled water. Meanwhile, we found that the heavy metals from steel making slag would be dissolved and precipitated using geochemcial equilibrium program such as visual minteq. Lead and copper leached from steel making slag with seawater were dissolved nearly in the range of pH 11-12, but in the range of pH 7-10 those were precipitated about 90%. And cadmium leached from steel making slag with seawater were dissolved completely. On pH static test with distilled water, lead leached from steel making slag seemed to be similar to pH static test with seawater. However, copper and cadmium leached from steel making slag were dissolved. In general, the species of lead leached from steel making slag were formed mainly of $PbCl^+,\;PbSO_4$, the species of copper were formed mainly of $CuSO_4,\;CuCO_3$, the species of cadmium were formed mainly of $CdCl^+,\;CdSO_4$ due to being sorbed with the anions($Cl^-,\;CO_3^{-2},\;SO_4^{-2}$) of the seawater. Both pH static test with seawater and distilled water, it is not in the case of the mercury. Most of mercury leached from steel making slag was precipitated(SI=0). Because the decreasing of $Hg^{+2}$ concentrations depends ferociously on the variation of chloride($Cl^-$) existed in the seawater. $Hg^{+2}$ leached from steel making slag could be sorbed strongly with chloride($Cl^-$) compared of carbonate($CO_3^{-2}$) and sulfate($SO_4^{-2}$) in the seawater. On the basis of that result, we found that the species of mercury was formed of calomel($Hg_2Cl_2$) as one of finite solid. Due to forming a calomel($Hg_2Cl_2$) in the seawater, the stability of mercury species by steel making slag should be higher than those of lead, copper, and cadmium species. Regarding the results stated above, we postulated that the steel making slag could be recycled to sea aggregates due to being distinguishing leachability of heavy metals($Pb^{+2},\;Cu^{+2},\;Cd^{+2},\;and\;Hg^{+2}$) between leaching tests by distilled water and seawater.

Chemical Composition and Nutritional Value of Algae Meal Produced from Dairy Cow Wastes as a Feedstuff (젖소폐기물에서 생산된 Algae Meal의 화학적조성 및 사료적가치)

  • Kim, Y.K.;Eun, J.S.;Kim, S.D.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.75-85
    • /
    • 1998
  • Algal meal (cell) was produced from the solution of dairy cow wastes by fermentation of ulothrix. sp. and chlorella sp. Raw wastes mainly feces were diluted with ground water to give dry matter concentration of 0.5 w/v of wastes in 20 l amounts of ten plastic containers. Each containers were covered with plastic nets and vinyl films to protect from the insects and rain. Algea cells were harvested every 3 to 5 days and dried by sunlight and artifitial heat. Dried cells were ground by a feed meal, and analyzed and tested for the chemical composition of dry cell, in vitro DM and protein digestibility and the safty of algae. Protein contents in algae meals, ulothrix (29.37%) and chlorella (29.24%) were similar. However, chlorella contained lower Neutral detergent fiber (5.92%) than ulothrix(20,76%), and higher ash (32.86%) and calcium (12.62%) than ulothrix (28.66% and 6.09%) (P<.01). Ulothrix protein had higher for essential amino acids; valine, isoleucine and phenylalanine, than chlorella (P<.05). Algal fats contained high saturated fatty acids, C16:0 and C18:0, for ulothrix and high unsaturated fatty acids, C18:1 and C18:2, for chlorella (P<.01). In vitro digestibility of. ulothrix tended to be higher for DM, but lower for protein than chlorella. The weight gain and survival percentage were higher for pond fishes (loaches, Misgurnus sp. ) fed diet added chlorella meal than diets added ulothrix meal and control diet (P<.05).

  • PDF

Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea (우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가)

  • Chang, See-Un;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.8-19
    • /
    • 2008
  • The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.

Characteristic Trends of Vernacular Design Culture and Products in Post-industrial Society - a case of products: vernacular playing-culture of children and Infants - (후기산업사회의 버내큐러 디자인문화와 산물의 특징적 경향1 - 산물의 실례: 유소년 버내큐러 놀이문화 -)

  • 진선태
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.179-188
    • /
    • 2003
  • We can discover some facts that vernacular design products with a property of volunteer culture coexist with ready-made products as an useful objects in the post-industrial society. Currently, few attempts had been made at studies of the vernacular design objects with understanding cultural context in post-industrial society, it is necessary to illuminate the relationships between the user with a role of design producer and the product viewed in culturally. In chapter 2, by examining documentary, t have been understood the definition, apprehensions, attributes linking creative use's culture with vernacular design culture, and distinctions between vernacular design and main stream design system. In chapter 3, by verifying products of everyday street and construction site, have been investigated the public characters and the differences compared with the past. In chapter 4, as a subtle example, have been analyzed design feathers and cultural characters of the products which children and infants culture generates by reflecting the socio-economic backgrounds and the culture from 60c and 70c to now according to the phases of the times. In conclusion, first, it seems quite probably that all of artificial objects exist a state of ready-made but that is not appropriate to correspond with user's whole behaviors. supplementally, it causes the phenomenon of vernacular design products. Secondly, it is reasonable to suppose that such main-stream design system and vernacular design go forward continually and crossly with coexistent relationships as high culture and sub culture. Third, three concepts: long-life design, ecology design and recycling revealed in vernacular design are useful distinguishing marks for the future design directions, moreover instant-response, fast and flexible process, three distinctions have a possibility of alternative process which can overcome the control-based process such as the systematic approach and the planning MTG in present. Finally, in children and infants culture, vernacular design products have changed the pure style products in the past into the modified techno playing products in the present. These should De a substitute product that supplyes variousness to ready-made design system and a design culture that maintains continually as a independent culture.

  • PDF

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.