• Title/Summary/Keyword: 물질함수

Search Result 499, Processing Time 0.03 seconds

Changes in Moisture Contents of Rice-hull Based Root Media and Growth Responses of 'Seolhyang' Strawberry during Vegetative Propagation (육묘 과정 중 포트에 충진된 팽연왕겨 혼합상토의 함수량 변화와 '설향' 딸기의 생장 반응)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • This research was conducted to investigate the changes in moisture retention capacities of expanded rice-hull (ERH)-based root media and their influences on the growth of mother and daughter plants in vegetative propagation of 'Seolhyang' strawberry. The proportion of water at the container capacity of ERH medium was in the range of 20 to 23%. This range was lower than the 60 to 66% of strawberry-specialized medium, the 30 to 34% of soil mother material (SMM) and the 30 to 35% of loamy sand. The moisture content of ERH was reduced to 10 to 12% at 8 hours after irrigation, and there were large variations among replications of ERH medium. Among four kinds of root media formulated to contain ERH, the medium of ERH + coir dust (CD) (55 + 45%, v/v) had 26.5 and 32.5% water contents at 20 and 40 days after irrigation to daughter plants, respectively. The m edia o f ERH + sandy loam (S L) and E RH + S MM showed similar trends i n moisture r etention. The pH and EC i n the all root media tested were in the range of 6.7 to 7.1 and 0.03 to $0.08dS{\cdot}m^{-1}$, respectively. The pHs and ECs measured at 20 and 40 days after irrigation were not significantly different in each root medium. Among the root media formulated to contain ERH, the growth of daughter plants was the highest in the treatment of ERH + SL (55 + 45%, v/v). As the blending rate of coir dust was elevated in the ERH + CD media, moisture retention capacity increased gradually, but the growth of daughter plants became worse even though the medium showed higher moisture retention capacity than other root media tested. The growth of roots and aboveground tissues of daughter plants deteriorated in the root media formulated by blending ERH + perlite (PE) at various ratios. The results of this research suggest the optimum formulations of root media and management of moisture content in raising of strawberry daughter plants when ERH is a component of root media.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

Comparative Compressional Behavior of Zeolite-W in Different Pressure-transmitting Media (제올라이트-W의 압력전달매개체에 따른 체적탄성률 비교 연구)

  • Seoung, Donghoon;Kim, Hyeonsu;Kim, Pyosang;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2021
  • This study aimed to fundamentally understand structural changes of zeolite under pressure and in the presence of different pressure-transmitting media (PTM) for application studies such as immobilization of heavy metal cation or CO2 storage using pressure. High-pressure X-ray powder diffraction study was conducted on the zeolite-W (K6.4Al6.5Si25.8O64× 15.3H2O, K-MER) to understand linear compressibility and the bulk moduli in different PTM conditions. Zeolite-w is a synthetic material having the same framework as natural zeolite merlinoite ((K, Ca0.5, Ba0.5, Na)10 Al10Si22O64× 22H2O). The space group of the sample was identified as I4/mmm belonging to the tetragonal crystal system. Water, carbon dioxide, and silicone-oil were used as pressure-transmitting media. The mixture of sample and each PTM was mounted in a diamond anvil cell (DAC) and then pressurized up to 3 GPa with an increment of ca. 0.5 GPa. Pressure-induced changes of powder diffraction patterns were measured using a synchrotron X-ray light source. Lattice constants, and bulk moduli were calculated using the Le-Bail method and the Birch-Murnaghan equation. In all PTM conditions, linear compressibility of c-axis (𝛽c) was 0.006(1) GPa-1 or 0.007(1) GPa-1. On the other hand, the linear compressibility of a(b)-axis (𝛽a) was 0.013(1) GPa-1 in silicone-oil run, which is twice more compressible than the a(b)-axis in water and carbon dioxide runs, 𝛽a = 0.006(1) GPa-1. The bulk moduli were measured as 50(3) GPa, 52(3) GPa, and 29(2) GPa in water, carbon dioxide, and silicone-oil run, respectively. The orthorhombicities of ac-plane in the water, and carbon dioxide runs were comparatively constant, near 0.350~0.353, whereas the value decreased abruptly in the silicone-oil run following formula, y = -0.005(1)x + 0.351(1) by non-penetrating pressure fluid condition.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF