• Title/Summary/Keyword: 물액적

Search Result 98, Processing Time 0.023 seconds

A Study on the Cooling Effect of a Water Fire Extinguishing Agent Containing NaBr (NaBr을 첨가한 물소화제의 냉각효과에 관한 연구)

  • 방창훈;김종석
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.6-12
    • /
    • 2001
  • The objective of the present work is to examine the cooling effect of a water fire extinguishing agent containing NaBr(30%, w/w). The carbon steel and teflon were used as a hot solid. The temperature on the hot solid surface ranged from $70^{\circ}c$ to $116^{\circ}c$ and water droplet size was 2.6 mm in the experiments. It is suggested that regardless of the hot solid material, the indepth temperature of the case of NaBr solution is lower than that of pure water and the variation of indepth temperature of teflon is higher than that of carbon steel. Regardless of the hot solid material, the time averaged heat flux of the case of pure water is higher than that of NaBr solution. the apparent evaporation time of the case of pure water is shorter than that of NaBr solution.

  • PDF

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC (마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구)

  • Woo, Ahyoung;Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

Production of Water/n-decane Emulsion Fuel and Evaluation of Rheological Stability (물/n-데칸 에멀젼 연료의 제조 및 유변학적 안정성 평가)

  • Kim, Hye Min
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • In this study, the production of proper emulsion fuel and the evaluation of its rheological stability in various experimental conditions were carried out. The W/O (water-in-oil) emulsion fuel was made using n-decane, pure water, and Span 80 was used as a surfactant. Increments of water volume ratio and fuel temperature were the factors, which boosted the phase separation of the emulsion fuel. Rheological characteristics for different water/oil volume ratio, temperature, and elapsed time after the fuel production were examined. As the water volume ratio in the fuel increased, the behavior of non-Newtonian fluid was observed. Viscosity declined as the fuel temperature increased due to the cohesion of water droplets in the fuel. The effect of elapsed time on viscosity was not severe for lower water ratio. However, gradual decrease of viscosity 3 hours after fuel production, in the case of ratio of 3:7, was clearly observed.

Experimental Study of Overtopping Void Ratio by Wave Breaking (쇄파에 의한 월파의 기포분율에 대한 실험적 연구)

  • Ryu, Yong-Uk;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • The aeration of an overtopping wave on a vertical structure generated by a plunging wave was investigated through laboratory measurements of void fraction. The overtopping wave occurring after wave breaking becomes multi-phased and turbulent with significant aeration, so that the void fraction of the flow is of importance. In this study, fiber optic reflectometer and bubble image velocimetry were employed to measure the void fraction, velocity, and layer thickness of the overtopping flow. Mean properties were obtained by ensembleand time-averaging the repeated instantaneous void fractions and velocities. The mean void fractions show that the overtopping wave is very high-aerated near the overtopping wave front and relatively low-aerated near the deck surface and rear free surface of the wave. The flow rate and momentum of the overtopping flow estimated using the measured data show that the void ratio is an important parameter to consider in the multiphase flow. From the similarity profiles of the depth-averaged void fraction, velocity, and layer thickness, one-dimensional empirical equations were obtained and used to estimate the flow rate and momentum of the overtopping flow.

Spray and Combustion Characteristics of Liquid Jet in Cross Flow (횡단류에 분사되는 액체 제트의 분무 및 연소 특성)

  • Lee, Gwan-Hyeong;Kim, Du-Man;Gu, Ja-Ye;Hwang, Jin-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.48-58
    • /
    • 2006
  • The spray and combustion characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which may be used to generate numerical solutions to spray and chemical reactive fluid problem in three space dimensions and modified to be suitable for simulating liquid jet ejected into the cross flow. Wave model and Kelvin- Helmholtz(KH) /Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Penetration length increases as flow velocity decreases and injection velocity increases. Numerical error increases as inflow velocity increases. The results of flame propagation contour in combustion chamber and local temperature distribution, combustion emissions were obtained.

Synthesis and Characterization of Poly(urethane-ethyl acrylate) Hybrid Emulsion (폴리(우레탄-에틸 아크릴레이트) 혼성 에멀젼의 합성과 물성 비교 연구)

  • Cheong, In Woo;Lee, Jong Kil;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2005
  • Poly(urethaneethyl acrylate) hybrid emulsions were synthesized to improve their thermomechanical and solvent resistance properties. In the synthesis, dimethylol propionic acid was used to impart hydrophilicity to the hybrid polymers, and ethyl acrylate monomer was added to the polyurethane prepolymer after neutralization with triethylamine. After dispersion of the neutralized prepolymer, chain extension was carried out with ethylene diamine. Consequently, poly(urethaneethyl acrylate) hybrid emulsion was prepared via soap free emulsion polymerization of ethyl acrylate with reduction-oxidation initiator couple of t-butyl hydroperoxide/sodium bisulfite at $50^{\circ}C$. Tehsile strength, 100% modulus, elongation, and solvent-resistance properties of the hybrid emulsion were measured and compared with those of polyurethane homopolymer, poly(ethyl acrylate) homopolymer, and simple blended samples.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Liquid-Liquid Dispersion of an Immiscible Liquid Phase (n-Hexane/Water) System in a Stirred Tank (교반조에서 비혼화성 액상(n-헥산/물)계의 액-액분산)

  • Kim, Tae-Ok;Kim, Dong-Uk;Chun, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.537-543
    • /
    • 1993
  • The effect of agitation on liquid-liquid dispersion was investigated in an immisible liquid phase(n-hexane/water) system. Four different types of six-bladed turbine impellers were used: a flat blade, two screen blades and a solid edged 60 mesh screen blade. We found that the extent of dispersion of organic phase and power consumption of agitator were decreased in the order of flat, solid edged, 60 mesh, and 40 mesh blades at same agitation speed. And the minimum agitation speed for complete dispersion of organic phase was increased with increasing volume fraction of organic phase. Also, mean diameter of liquid droplets of dispersed phase was decreased with increasing agitation speed and it was increased in the order of solid edged, flat, 60 mesh, and 40 mesh screen blades at same agitation speed. At complete dispersion, the minimum power consumption was not vary significantly with impeller blade types, but the solid edged screen blade impeller gave the smallest and uniform sizes of liquid droplets, and it had a good performance for liquid-liquid dispersion. In this condition, Power number was not affected by Reynolds number and it was constant in turbulent flow region, and Sauter mean diameter($d_{32}$) of liquid droplets was expressed as a function of volume fraction of organic phase(${\phi}$) and Weber number($N_{We}$) as follows: $d_{32}/D=a(1+b{\phi})N_{We}{^{-0.6}}$.

  • PDF

Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel (Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정)

  • Yoon,Sang-Youl;Ko, Choon-Sik;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

Study of two phase flow and erosion characteristic in SRM nozzle (고체 추진제 로켓 노즐 내부의 2상 유동 및 마모 특성에 관한 연구)

  • 김완식;조형희;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.32-32
    • /
    • 1998
  • 고체 추진제 로켓의 연소시에 발생되는 산화 알루미늄(A1$_2$O$_3$) 입자는 로켓 추진 노즐에서 팽창과정의 효율을 저하시키는 요소가 되며, 이러한 비효율성은 연소 가스와 입자간의 비평형 상태 효과와 기본적인 속도와 열적 차이에 의해서 발생된다고 보고되었다. 또한 연소시 발생된 산화 알루미늄 입자는 높은 열과 큰 운동량을 가지고 로켓 노즐 내부를 유동하게 되며, 매우 많은 량이 짧은 시간에 고온 고속으로 노즐 벽면이나 기타 구조물에 충돌 및 점착하기 때문에 로켓 노즐내의 표면이 손상을 입게 되고, 로켓의 방향 제어 및 조정 안정성이 저하되며, 구조적인 강도가 약화 될 수 있다. 또한 산화 알루미늄 액적들의 경우 노즐 벽면에 고착되게 되면 로켓의 중량 증가로 인해서 추력의 손실을 초래할 수 있다. 따라서 이러한 연소 부산물들의 운동 경로와 충돌 위치 및 표면에서의 충돌량과 그리고 충돌에 따른 마모량 및 점착 그리고 열전달 특성을 예측하는 것이 필수적이다.

  • PDF