• Title/Summary/Keyword: 물리탐사자료

Search Result 1,032, Processing Time 0.034 seconds

Importance and Application of Ichnology (생흔학의 중요성 및 활용)

  • Kim, Jong-Kwan;Chun, Seung-Soo;Baek, Young-Sook;Chang, Eun-Kyong;Shin, Sun-Ja
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Ichnology is the study of traces made by various organisms, which includes classification and description of traces, and interpretation of sedimentary process, behavior of organism and depositional environment based on traces and organism behavior. Ichnofacies, which is defined as the association of several traces related together with substrate characteristics and sedimentary processes, is closely related to depositional environment. Ichnology has been applied to sedimentology (to understand physical characteristics of depositional environment, sedimentation pattern and event bed), sequence stratigraphy (to recognize sequence boundaries and biostratigraphic discontinuities such as MFS, TSE and RSE), oil exploration (providing of many information without big cost) and palaeocology. Preliminary ichnological study on the Ganghwa intertidal flat shows that dominant ichofacies are changing with season and location, suggesting that their seasonal variation would be a good indicator to understand the seasonal change of sedimentary processes, the small- scale change of sedimentary environment and the preservation potential of such units. Ichnology on intertidal flat in western coast of Korea has a great potential to apply its results to petroleum geology as well as sedimentology.

  • PDF

Two-dimensional Inversion of Sea-effect-corrected Magnetotelluric (MT) Data in Jeju Island (해양효과가 보정된 제주도 자기지전류 탐사 자료의 2차원 역산)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Choon-Ki;Park, Gye-Soon
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.602-612
    • /
    • 2011
  • Jeju Island, a volcanic island located in South Korea, has been one of the main targets of geophysical and/or geological studies because of its tectonic importance related to the volcanism and tectonic link to the southern part of the Korean Peninsula. Recently, as a number of broad-band magnetotelluric (MT) measurements were made, we have examined the deep part of the island. In such an insular setting, it is not easy to properly recover the deep structures such as the lower crust and the upper crust using MT data, because their low-frequency components are strongly affected by the surrounding sea of the island. In this study, we apply the sea-effect correction to the existing MT data collected at a total of 102 sites in Jeju Island. The sea-effect correction makes remarkable changes in the observed MT data at frequencies below 1 Hz, clearly indicating the existence of a conductive lower crust. The 2-D inversion results for both Jeju Southern Line (JSL) and Jeju Northern Line (JNL) show that the transition zone separating the resistive upper crust and conductive lower crust exists at a depth of 20 km on average.

Crustal Structure of the Continent-Ocean Zone around the Middle Eastern Part of Korean Peninsula Using Gravity Data (중력자료를 이용한 한반도 중부 대륙-해양 지역의 지각구조 연구)

  • 유상훈;민경덕;박찬홍;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.455-463
    • /
    • 2002
  • There have been few geophysical studies on the crustal structure of the continent-ocean zone around the middle eastern part of Korean peninsula, because of the lack of database in both land and ocean. The area for the study on the internal crustal structure using gravity data is bounded by the latitude of 37$^{\circ}$-38"N and longitude of 128$^{\circ}$-132$^{\circ}$E. WCA correction is applied to shipborne gravity data to integrate with gravity anomalies obtained on land. The high frequency components of the shipborne gravity data which are considered as the noise on survey track are effectively removed by means of correlating with satellite gravity data. The corrected shipborne free-air gravity anomaly is integrated with the Bouguer gravity anomaly on land under the same condition. The integrated gravity anomaly is divided into four areas for power spectrum analysis. The depths of Moho discontinuity increases gradually from inland to Ulleung basin. As the result of modeling based on power spectrum analysis, Moho discontinuity depth is about 33-35 km in the continental zone of Korea and 18-28 km at the continental margin. Such structural character is well elucidated in changing gravity data around Ulleung basin. The depths of Moho discontinuity in the southern ocean of Ulleung-island is 16--17 km, which is much lower than in the land. The result of crustal structure modeling in this study is similar to that computed by prior seismic exploration around this area.

Comparative Analysis of Algorithm for Calculation of Absorbed Shortwave Radiation at Surface Using Satellite Date (위성 자료를 이용한 지표면 흡수단파복사 산출 알고리즘들의 비교 분석)

  • Park, Hye-In;Lee, Kyu-Tae;Zo, Il-Sung;Kim, Bu-Yo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.925-939
    • /
    • 2018
  • Absorbed shortwave radiation at the surface is an important component of energy analysis among the atmosphere, land, and ocean. In this study, the absorbed shortwave radiation was calculated using a radiation model and surface broadband albedo data for application to Geostationary Earth Orbit Korea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A). And the results (GWNU algorithm) were compared with CERES data and calculation results using pyranometer and MODIS (Moderate Resolution Imaging Spectroradiometer) data to be selected as the reference absorbed shortwave radiation. This GWNU algorithm was also compared with the physical and statistical algorithms of GOSE-R ABI and two algorithms (Li et al., 1993; Kim and Jeong, 2016) using regression equation. As a result, the absorbed shortwave radiation calculated by GWNU algorithm was more accurate than the values calculated by the other algorithms. However, if the problem about computing time and accuracy of albedo data arise when absorbed shortwave radiation is calculated by GWNU algorithm, then the empirical algorithms explained above should be used with GWNU algorithm.

Application of HWAW Method to Detect Underground Anomaly in Shallow Depth (지표 근처 지중 이상체 파악을 위한 HWAW 기법의 적용)

  • Bang, Eun-Seok;Kim, Gyeong-Seob;Son, Jeong-Sul;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.11-20
    • /
    • 2009
  • A new alternative method based on HWAW method to detect underground anomaly was introduced. The location of underground anomaly can be estimated by using 2-dimensional image of phase velocity image with position and wavelength based on distortion phenomena of surface wave due to underground anomaly. Overall procedure of proposed method such as field testing, signal processing and interpretation of the result was introduced. Numerical verification study was performed by using various ground models containing underground anomaly. According to the condition of anomaly, the propagation and reflection characteristics of surface wave were different and this could be more easily shown in the image of phase velocity. Some rules of distortion phenomena were found and these become clues for estimating underground anomaly in interpreting real field data. Field verification tests were performed with conventional geophysical methods such as DC resistivity method and GPR. Though field condition is not homogeneous like numerical models, similar distortion phenomena were found in the testing results and estimated location of underground anomaly was agreed well with the results of another geophysical methods.

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

Development of a Data Integration Tool for Hydraulic Conductivity Map and Its Application (수리전도도맵 작성을 위한 자료병합 툴 개발과 적용)

  • Ryu, Dong-Woo;Park, Eui-Seup;Kenichi, Ando;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.493-502
    • /
    • 2007
  • Measurements of hydraulic conductivity are point or interval values, and are highly limited in their number. Meanwhile, results of geophysical prospecting can provide the information of spatial variation of geology, and abundant in number. In this study, it was aimed to develop a data integration tool for constructing a hydraulic conductivity map by integrating geophysical data and hydraulic conductivity measurements. The developed code employed a geostatistical optimization method, simulated annealing (SA), and consists of 4 distinct computation modules by which from exploratory data analysis to postprocessing of the simulation were processed. All these modules are equipped with Graphical User Interface (GUI). Validation of the developed code was evaluated in-situ in characterizing hydraulic characteristics of highly permeable fractured zone.

Spatial resolution effects in hyper-resolution urban flood modeling (초고해상도 도시 홍수 모의의 공간해상별 침수해석 특성 분석)

  • Noh, Seong Jin;Kim, Bomi;Lee, Seungsoo;Lee, Junhak;Choi, Hyeonjin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.336-336
    • /
    • 2021
  • 기후변화와 도시화로 인한 집중 호우와 불투수층 증가로 도시 홍수의 발생 빈도와 규모가 증가하고 있다. 인적, 물적 자원이 집중되어 있는 도시유역의 특성상 침수가 발생하면 이로 인한 직접적 피해 뿐만 아니라 사회경제적 2차 피해를 발생한다. 도시 홍수로 인한 피해를 줄이고 도시의 재해에 대한 회복력을 키우기 위해서는 관측과 더불어 정확한 모의 기술이 중요하다. 한편, 격자 기반 도시 홍수 모의는 집중 호우에 따른 침수의 시공간적 발생 양상을 물리적으로 해석하는 방법으로, 지표수-우수관거 이중배제 통합 모의, 수치기법, 병렬컴퓨팅, 수질 연계 모의 등의 측면에서 지금까지 많은 발전이 이루어져 왔다. 최근들어 원격탐사 기술의 발달로 공간해상도 1미터 수준 혹은 그 이상의 초고해상도 지형자료가 많은 지역에서 대해 가용해지고 있으며, 도시 홍수 해석에 이와 같은 초고해상도 자료를 적용하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 초고해상도 지형 및 토지 피복 자료의 공간해상도가 침수해석에 미치는 영향을 분석한다. 도시침수의 두가지 주요 요인인 내수침수와 외수범람 중에서 극한 강우에 의한 내수침수해석 사례만을 주요 연구 범위로 한다. 초고해상도 입력자료의 격자기반 도수 해석 모형으로는 운동파 기반의 2차원 지표 흐름 해석 모형을 적용하고, 초고해상도 모의의 효율적 계산을 위해 하이브리드 병렬 컴퓨팅 기술을 이용한다. 초고해상도 입력자료 적용 사례 대비, 공간해상도 저하에 따라 침수 면적이나 깊이 등에서 어떤 변화가 있는지 정량적으로 검토한다. 또한, 강우의 강도 및 공간분포가 초고해상도 도시 홍수 해석에 미치는 영향에 대해서 분석한다. 모의 결과로부터 도시 홍수 해석시 거리 단위(street-level) 정확도의 재현을 위해 적정한 공간해상도를 분석하고, 초고해상도 도시 홍수 모의를 이용한 기후변화에 따른 극한 홍수의 도시지역 영향 분석 및 회복력 개선 관련 연구의 가능성에 대해 논의한다.

  • PDF

Progress and Land-Use Characteristics of Urban Sprawl in Busan Metropolitan City using Remote Sensing and GIS (원격탐사와 GIS를 이용한 부산광역시 도시화지역의 확산과정과 토지이용 특성에 관한 연구)

  • Park, Ho-Myung;Baek, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • Satellite image is very usefully practiced to predict and analyze physical expansion and change of city. Physical expansion and change of city is closely related to the use of land, and continuous growth management focused on the use of land is essential for sustainable city growth. In this research, the change of land cover and land-use were analyzed with basic input data from 1985 to 2000 according to artificial satellite. Moreover, the land-use turnover rate was understood and expansion trend of urban sprawl in Busan metropolitan city and land-use characteristics of the expansion area. The results are, first, the area for urban region was expanded continuously but areas for agriculture area, forest area, and water area had different changes due to administrative district reform of Busan by each year. Second, the urbanization area in Busan was increased by 3.8% from $92.5km^2$ in 1985 to $167.5km^2$ in 2000. Third, the result of analysis on land-use turnover rate showed that agriculture area was turned into urbanized area the most, and forest area was followed by. Fourth, the result of analysis on database and overlay of buildings in Busan established in 2001 showed that agriculture area are had type 1 and 2 neighborhood living facilities (45.63%), apartment house in forest area (18.49%), and factory in water area (31.84%) with high ratio.

  • PDF

Crop Monitoring Technique Using Spectral Reflectance Sensor Data and Standard Growth Information (지상 고정형 작물 원격탐사 센서 자료와 표준 생육정보를 융합한 작물 모니터링 기법)

  • Kim, Hyunki;Moon, Hyun-Dong;Ryu, Jae-Hyun;Kwon, Dong-Won;Baek, Jae-Kyeong;Seo, Myung-Chul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1199-1206
    • /
    • 2021
  • Accordingly, attention is also being paid to the agricultural use of remote sensing technique that non-destructively and continuously detects the growth and physiological status of crops. However, when remote sensing techniques are used for crop monitoring, it is possible to continuously monitor the abnormality of crops in real time. For this, standard growth information of crops is required and relative growth considering the cultivation environment must be identified. With the relationship between GDD (Growing Degree Days), which is the cumulative temperature related to crop growth obtained from ideal cultivation management, and the vegetation index as standard growth information, compared with the vegetation index observed with the spectralreflectance sensor(SRSNDVI & SRSPRI) in each rice paddy treated with standard cultivation management and non-fertilized, it was quantitatively identified as a time series. In the future, it is necessary to accumulate a database targeting various climatic conditions and varieties in the standard cultivation management area to establish a more reliable standard growth information.