• Title/Summary/Keyword: 물리적.역학적 성질

Search Result 68, Processing Time 0.025 seconds

A Study on the Geotechnical Assessment of Sedimentary Rock due to Weathering in Taegu area (대구지역 퇴적암의 풍화도판단 기술 연구)

  • 김영수;김교원;허노영;예대호;이재호;최정호
    • Proceedings of the KSEG Conference
    • /
    • 2001.03a
    • /
    • pp.15-22
    • /
    • 2001
  • 퇴적암의 풍화특성을 파악하기 위해서는 풍화과정을 지배하는 암석의 광물 조성과 화학성분에 대한 연구가 필요하다. 본 논문에서는 풍화정도에 따른 퇴적암의 특성을 고찰하기 위해서 대구지역에 분포하고 있는 퇴적암을 채취하여 화학 및 광물성분 분석과 시간경과에 따른 물리 및 역학특성 시험을 실시하였다. 퇴적암에 대한 풍화판정법은 시험결과 Parker의 풍화지수식이 잘 일치하였고 모암에 함유된 $Al_2$O$_3$, CaO, $Na_2$O, $K_2$O, MgO등의 화학성분과 조장석(Albite, Ab), 백운모(Muscovite, Ms), 마그네타이트(Magenetite, Mt)등의 광물성분이 풍화와 밀접한 관계가 있었으며, 또한 암석의 풍화정도와 공학적 성질에 대한 상관관계식을 제안하였다.

  • PDF

Evaluation on Physical and Mechanical Properties of Wood Plastic Composites Treated under Ultraviolet Irradiation (자외선을 처리한 목재 플라스틱 복합재의 물리 및 역학적 성질 평가)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.428-434
    • /
    • 2015
  • In this study, we received each wood plastic composites (WPC) from three manufacturers. These WPCs were evaluated regarding their physical and mechanical properties of both before and after accelerated weathering by ultraviolet (UV) irradiation. The total time of exposure of the WPCs to UV irradiation was 1800 h. The water absorption, volumetric swelling and shrinkage of WPCs did not affected by UV irradiation. Among the mechanical properties, there was no significant differences in bending strength and screw withdrawal resistance of UV treated WPCs compared with those of reference WPCs. However, surface hardness of WPCs showed decrease under UV irradiation. Stereoscopic microscopy observation revealed deterioration of the surface layer polymer in all weathered WPCs by UV. Exposure of the WPCs to UV irradiation caused decomposition and disappearance of the polymer layer. From this result, we can estimate that damage of polymer by UV led to a decrease in the surface hardness of the WPCs. The wood flours retained original shape after accelerated weathering by UV irradiation.

Evaluation on Weathering Characterization on Rock Types Using Artificial Weathering Test (인공풍화시험을 이용한 암종별 풍화특성 평가)

  • Heo, Yeul;Kang, Changwoo;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.23-32
    • /
    • 2017
  • For exposed slopes, the weathering degree over time has a major effect on the engineering properties of rocks and the slope stability. Rocks are gradually changed by weathering into soil over time, and the resulting physical, chemical and mechanical changes of rocks affect the engineering stability of the slope. However, there are not many ways to objectively evaluate the weathering degree of a slope. In this study, therefore, to investigate the weathering characteristics of rocks, granite, gneiss and shale distributed in the Chungbuk region were sampled by weathering stage and changes in their component minerals and tissues were investigated. Furthermore, artificial weathering was induced using the freezing and thawing test and quantitatively investigated through porosity and absorption rate. In addition, the changes of microcracks due to artificial weathering were evaluated through box fractal dimension ($D_B$). Through mineralogical study the phase change of constituting minerals, the growth of secondary minerals, the development of micro-cracks and the fabric changes due to weathering were observed. The mineralogical, chemical and engineering evaluations of the weathering degree through the experimental results in this study are expected to be useful for analyzing the weathering characteristics and causes by rock type and for proposing a methodology to evaluate the degradation of physical properties comparatively and quantitatively.

The structural safety diagnosis of Dabo Pagoda of Bulkuk Temple using analyses of ultrasonic wave velocity (초음파 속도 분석을 통한 불국사 다보탑 구조 안전 진단)

  • Suh, Man-Cheol;Song, In-Sun;Choi, Hui-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 2002
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Dabo Pagoda of Bulkuk temple located in Kyungju, Kyungbuk Korea. For estimating the mechanical properties of each rock block of the pagoda, ultrasonic measurements were conducted at 641 points of 255 blocks. The P-wave velocity ranges from 584m/sec through 5,169m/sec, and averages 2,901m/sec Based on this result, the uniaxial compressive strength was estimated to be $93{\sim}1,943kg/cm^2\;with\;396kg/cm^2$ of average, and the index of weathering is $0.07{\sim}0.88$ with 0.43 of average, which means the moderate degree of weathering. The comparison of the rock strength of each block with the overburden acting on the block reveals that the rock blocks related to the structure of the pagoda are relatively sound for uniform stress, but it is highly possible for a concentrated stress to lead to a partial failure. We suggest a monitoring of cracks due to the concentrated stress. The parapets of 1st and 2nd floors composed of small rock pieces are severely weathered. However, this is not directly related to the structural safety of the pagoda.

  • PDF

Studies on Wood Quality and Growth of Quercus rubra (24 Years Old) in Korea - Physical and Mechanical Properties - (24년생 루브라참나무의 생장과 재질에 관한 연구 - 물리·역학적 성질 -)

  • Han, Mu-Seok;Lee, Chang-Jun;Park, Bong-Seok;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.327-338
    • /
    • 2014
  • Relationship between growth rate and wood quality was investigated by physical and mechanical properties with Quercus rubra (24 years old) from five different origin of apricot. In greenwood moisture content, sapwood had higher moisture content than heartwood, and there was difference among different origin of apricot. There were different specific gravity of wood among different origin of apricot. Compared with higher growth rate with higher specific gravity in sapwood, opposite trend was observed in heartwood. There were difference in shrinkage based on origin of apricot, and higher growth rate wood had higher shrinkage and T/R ratio. Compression Young's modulus, bending strength, bending Young's modulus, and compact strength was difference among different origin of apricot. Higher growth rate wood had higher tensile strength, and also there was difference amont different origin of apricot. In hardness, 3 different directions had all difference among different origin of apricot, and higher growth rate wood showed higher hardness than others. Based on overall physical and/or mechanical properties and growth rate, apricot from Bancroft was best quality in current.

The Structural Safety Diagnosis of Three-Story Pagoda in Bulkuk Temple Using the Probability of Failure. (암석의 파괴 확률 분석을 통한 불국사 삼층석탑 구조 안전 진단)

  • Seo, Man-Cheol;Song, In-Seon;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Three-Story Pagoda(Seokga Pagoda) in Bulkuk temple in the city of Kyungju, Kyungbuk, Korea. Ultrasonic wave velocities were measured at 456 points of the pagoda comprising 44 blocks to estimate the mechanical properties of rock blocks constituting the pagoda. The measured velocities have the range of 1217 to 4403 m/sec with the average of 3227 m/sec. The empirical relationship between the ultrasonic velocity and the uniaxial compressive strength yielded the estimation of strength of each block, ranging from 134 to 844 kg/cm^2 and averaging 463 kg/cm^2. With an assumption that the strength of each block is described as a random variables having a normal distribution, we calculated the probability of failure of rock blocks of the pagoda. Our investigation revealed that the probability of the structural failure due to the weight of higher blocks is very low. However, the probability of partial failure around contact area is substantial, which is consistent with the appearance that edges and the corners of some blocks were broken off. The platform under the body of the pagoda appeared to be structurally weak as the probability of tensile failure of the lower platform is up to 18%, and diagonal fractures are shown where the probability of failure is high.

  • PDF

Investigation of Thermal Stability of Epoxy Composite Reinforced with Multi-Walled Carbon Nanotubes and Micrometer-Sized Silica Particles (다중벽 탄소나노튜브와 마이크로미터 크기 실리카 입자로 강화된 에폭시 복합재료의 열 안정성에 관한 연구)

  • Oh, Ryun;You, Byeong Il;Ahn, Ji Ho;Lee, Gyo Woo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.306-314
    • /
    • 2016
  • In this study, to improve the thermal stabilities of the epoxy composite specimens in addition to the enhanced mechanical properties, those were reinforced with carbon nanotubes and micrometer-sized silica particles. To disperse the filler in matrix relatively simple physical process, specimens were fabricated using shear mixing and sonication. Tensile strength, coefficients of thermal expansion and thermal conductivity of the specimens were measured with varied contents of the two fillers. The mechanical and thermal properties were also discussed, and the experimental results of thermal expansion related to the thermal stability of the specimens were compared with those from several micromechanics models. The hybrid composites specimens incorporating 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed better mechanical properties than the others with increase in tensile strength up to 11%, with respect to those of the baseline specimens. As the silica contents were increased the thermal expansion was reduced down to 36%, and the thermal stability was improved with the decreased thermal deformation. Thermal conductivity of the epoxy composite specimens incorporating 50 wt% of silica particles was enhanced, which demonstrate improvement of 72%. The mechanical and thermal properties of the hybrid composites specimens incorporating the two fillers were improved simultaneously.

Bending and Compressive Strength Properties of Larix kaempferi According to Thinning Intensity (간벌강도에 따른 낙엽송의 휨 및 종압축강도성능)

  • Chong, Song-Ho;Won, Kyung-Rok;Hong, Nam-Euy;Park, Byung-Su;Lee, Kyung-Jae;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.385-392
    • /
    • 2014
  • The purpose of this study was to determine the effects of plantation thinning on physical and mechanical properties of Larix kaempferi. Tree samples were obtained from unthinned, moderately, heavily thinned plantations where located in Kwangryung forest research stand. The effects of different thinning methods on the bending and parallel to grain compressive strengths of Larix kaempferi were explored. Average latewood ratio with various thinning treatments revealed the trend of unthinning < moderate thinning < heavy thinning treatment. Average annual ring width with various thinning treatments showed the trend of unthinning < moderate thinning or heavy thinning treatment. Average bending and parallel to grain compressive strengths with various thinning treatments revealed the trend of unthinning > moderate thinning > heavy thinning treatment. This indicates that thinning treatment reduces average bending and parallel to grain compressive strength properties.

Laboratory Evaluation of Polysulfide Epoxy Overlay Material for Bridge Deck (교면포장용 폴리설파이드 에폭시재료의 실내물성 평가)

  • Kim, Jun-Hyung;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This research was performed to evaluate physical properties of polysulfide epoxy overlay material for bridge deck as part of a review for possibility of domestic application of polymer concrete for bridge deck pavement. In order to evaluate strength characteristics, compressive strength, flexural strength and bond strength were tested, and, for durability characteristics, chloride ion penetration resistance and freeze/thaw resistance were tested along with ultraviolet rays impact evaluation. The tests showed that the results met the criteria suggested by the American Concrete Institute in terms of compressive strength, flexural strength and bond strength. However, in terms of the strengths measured at various test temperatures, it was found that the epoxy material was highly dependent on temperature, and, therefore, this should be considered at the time of domestic application of the epoxy material later. Deflection characteristics was checked through flexural strength test and it was found that bridge deck pavement using the epoxy material was excellent compared to bridge deck pavement using asphalt. Furthermore, the results of chloride ion penetration resistance test and freeze/thaw resistance test were also excellent. In the evaluation of ultraviolet rays impact on epoxy slurry mixture, reduction of strain was noticed with increased strength, but the deflection characteristics after exposure to ultraviolet rays was better than the existing acryl polymer concrete. Therefore, it is concluded from the research that the polysulfide epoxy overlay material has the physical properties that are appropriate to pavement of bridge deck.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF