• Title/Summary/Keyword: 물리적 결합

Search Result 903, Processing Time 0.021 seconds

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Degradation of the Herbicide, TOK(2,4-dichloro-4'-nitro diphenyl ether) in Soil (제초제(除草劑) TOK의 토양중(土壤中) 분해(分解))

  • Lee, Jae-Koo;Kim, Ki-Cheol;Kim, Chang-Han
    • Applied Biological Chemistry
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 1980
  • TOK (2,4-Dichlolo-4'-nitrodiphenyl ether) was applied to two Korean soils possessing different physico-chemical properties at a certain concentration and incubated for a certain time under flooded conditions. The metabolites and the soil microorganisms involved in the degradation of TOK are studied. Chong Ju and Chung Ju soils treated with TOK at a concentration of 500 ppm and incubated for two, four, and six months at $30^{\circ}C$ yielded 4-chloro-4'-amino diphenyl ether, 2, 4-dichloro-4'-amino diphenyl ether(amino-TOK), N-[4'-(4-chloro-phenoxy)] phenyl acetamide, and N-[4'-(4-chloro-phenoxy)] phenyl formamide as the major metabolites. TOK underwent the reduction of nitrogroup to amino group, dechlorination, acetylation, and formylation. No cleavage at the ether linkage was recognized. TOK was more readily degraded in Chung Ju soil which is characterized by the higher pH (PH 6.43), clay loam in textural class, and the higher cation exchange capacity. The toxicity of TOK as a possible environmental contaminant is expected to be considerably reduced as a result of the above degradation Twelve strains of soil bacteria were isolated from the TOK-treated Chong Ju and Chung Ju soils. As a result of the incubation of TOK in pure cultures of the isolates, T-1-1 strain isolated from Chong Ju soil had almost no degradability, whereas T-2-3 strain turned out to be the most potent. The degradation of TOK by the isolates constituted mostly the reduction of the nitro group to amino group. The citrate buffer extract of Chung Ju soil reduced TOK more readily to amino-TOK than that of Chong Ju soil.

  • PDF

Phosphorus Phases in the Surface Sediment of the South Sea (남해 표층 퇴적물에서의 인의 존재상)

  • SON Jaekyung;LEE Tongsup;YANG Han Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.680-687
    • /
    • 1999
  • To understand the role of shelf sediment in phosphorus biogeochemical cycle, we carried out sequential sediment extraction (SEDEX) of P and porewater analysis on 14 core samples collected in the South Sea of Korea, SEDEX classified P-pools into 5 phases and results are grouped into two categories: reactive P (loosely sorbed-P and Fe bound-P) and refractory P (detrital inorganic-p, authigenic mineral-P and organic-P). Total P concentrations are decreased with sediment depth in all samples as a result of dissolution to porewater. Reactive P comprises about $20\~50\%$ of total P, and iron bound-P is the major form consisting $70\~80\%$ of reactive P-pool. Iron bound-P decreases sharply with depth. Depth profiles of dissolved P concentration in porewater show mirror image of iron bound-P, revealing the role of FeOOH as a regulator of reactive P supply to overlying water column. Authigenic mineral-P consists less than $5\%$ of total P, thus removal of reactive P by converting into refractory P seems inefficient in shelf sediment. This implies that continental shelf sediment sequesters P temporarily rather than permanently. Results show local variation. Nakdong estuary receiving large amount of terrigenous input shows the highest concentration of total P and reactive P. Here iron oxyhydroxides at the surface sediment control the water column flux of P from sediment. Although total P content at the surface is comparable (500$\~$600 ${\mu}g{\cdot}g^{-1}$) between the South Sea and East China Sea, the former contains more iron bound-P and less derital inorganic-P than the latter. Reasons for the difference seem due in part to particle texture, and to biological productivity which depends roughly on the distance from land.

  • PDF