• Title/Summary/Keyword: 물고기 로봇

Search Result 42, Processing Time 0.03 seconds

Development of Biomimetic Underwater Vehicle using Single Actuator (단일 구동기로 수중 이동이 가능한 수중 이동체 개발)

  • Jun, Myoung Jae;Kim, Dong Hyung;Choi, Hyeun Seok;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.571-577
    • /
    • 2016
  • In this paper, we propose a novel propulsion method for a Biomimetic underwater robot, which is a bio-inspired approach. The proposed propulsion method mimics the pectoral fins of a real fish. Pectoral fins of real fish are able to propel and change direction. We designed the propulsion mechanism of 1 D.O.F. that has two functions (propel and change direction). We named this propulsion system 'Flipper'. The proposed propulsion method can control forward, pitch and yaw motion using the Flipper. We made an experimental underwater robot system and verified the proposed propulsion method. We measured its maximum speed and turning motion using an experimental underwater robot system. We also analyzed the thrust force from the maximum speed, using the thrust equation. Experimental results showed that our propulsion method enabled the thrust system of the biomimetic robot.

Optimization of Input Parameters by Using DOE for Dynamic Analysis of Bio-inspired Robotic Fish 'Ichthus' (생체모방형 물고기 로봇 '익투스'의 동적 해석을 위한 DOE를 이용한 입력파라미터 최적화)

  • Chung, Chang-Hyun;Lee, Sang-Hyo;Kim, Kyoung-Sik;Cha, You-Sung;Ryuh, Young-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.799-803
    • /
    • 2010
  • Recently, there is a rising interest on studying bio-inspired robotic fish because of real fish's great maneuverability and high energy efficiency. However, the researches about the robotic fish have not been done so much and there are still lots of problems to use them in the real environment such as in the river. This paper describes a bio-inspired robotic fish 'Ichthus' which is developed in KITECH and has 3 DOF propulsive mechanism. We develop the dynamic motion equation of 'Ichthus' in the underwater environment and analyze response characteristics of 'Ichthus' according to the input parameters of tail fin's amplitude and oscillation frequency. Then we propose control parameters at the various velocities. These parameters are useful to increase energy efficiency and it can be used when the fish robot moves in the real environment, for example, we can propose proper amplitude and oscillation frequency when the fish robot passes through the narrow space between obstacles.

Analysis on the Propulsion Force of an Ostraciiform Fish Robot with Elastically Jointed Double Caudal Fins and Effect of Joint Position on the Propulsion Force (탄성 조인트로 연결된 이중 꼬리 지느러미 오스트라키폼 물고기 로봇의 추진력 해석 및 조인트 위치가 추력에 미치는 영향)

  • Kang, I-Saac
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.274-283
    • /
    • 2011
  • A simplified linearized dynamic equation for the propulsion force generation of an Ostraciiform fish robot with elastically jointed double caudal fins is derived in this paper. The caudal fin is divided into two segments and connected using an elastic joint. The second part of the caudal fin is actuated passively via the elastic joint connection by the actuation of the first part of it. It is demonstrated that the derived equation can be utilized for the design of effective caudal fins because the equation is given as an explicit form with several physical parameters. A simple Ostraciiform fish robot was designed and fabricated using a microprocessor, a servo motor, and acrylic plastics. Through the experiment with the fish robot, it is demonstrated that the propulsion force generated in the experiment matches well with the proposed equation, and the propulsion speed can be greatly improved using the elastically jointed double fins, improving the average speed more than 80%. Through numerical simulation and frequency domain analysis of the derived dynamic equations, it is concluded that the main reason of the performance improvement is resonance between two parts of the caudal fins.

Swimming Microrobot Actuated by External Magnetic Field (전자기 구동 유영 마이크로로봇)

  • Byun, Dong-Hak;Kim, Jun-Young;Baek, Seung-Man;Choi, Hyun-Chul;Park, Jong-Oh;Park, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1300-1305
    • /
    • 2009
  • The various electromagnetic based actuation(EMA) methods have been proposed for actuating microrobot. The advantage of EMA is that it can provide wireless driving to microrobot. In this reason a lot of researchers have been focusing on the EMA driven microrobot. This paper proposed a swimming microrobot driven by external alternating magnet field which is generated by two pairs of Helmholtz coils. The microrobot has a fish-like shape and consists of a buoyant robot body, a permanent magnet, and a fin. The fin is directly linked to the permanent magnet and the magnet is swung by the alternating magnet field, which makes the propulsion and steering power of the robot. In this paper, firstly, we designed the locomotive mechanism of the microrobot boy EMA. Secondly, we set up the control system. Finally, we demonstrated the swimming robot and evaluated the performance of the microrobot by the experiments.

USN based sonar localization system for a fish robot (물고기 로봇을 위한 USN 기반 초음파 측위 시스템)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Park, Aa-Ron
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Localization is the most important functions in mobile robots. There are so many approaches to realize this essential function in wheel based mobile robots, but it is not easy to find similar examples in small underwater robots. It is presented the sonar localization system using ubiquitous sensor network for a fish robot in this paper. A fish robot uses GPS and sonar system to find exact localization. Although GPS is essential tool to obtain positional information, this device doesn't provide reasonable resolution in localization. To obtain more precise localization information, we use several Ubiquitous Sensor Networks (USN) motes with sonar system. Experimental results show that a fish robot obtains more detailed positional information.

Maximum Thrust Condition by Compliant Joint of a Caudal Fin for Developing a Robotic Fish (물고기 로봇 개발을 위한 유연한 꼬리 지느러미 관절의 강성에 따른 최대 추력 조건 연구)

  • Park, Yong-Jai;Jeong, U-Seok;Lee, Jeong-Su;Kwon, Seok-Ryung;Kim, Ho-Young;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Fish generates large thrust through an oscillating motion with a compliant joint of caudal fin. The compliance of caudal fin affects the thrust generated by the fish. Due to the flexibility of the fish, the fish can generate a travelling wave motion which is known to increase the efficiency of the fish. However, a detailed research on the relationship between the flexible joint and the thrust generation is needed. In this paper, the compliant joint of a caudal fin is implemented in the driving mechanism of a robotic fish. By varying the driving frequency and stiffness of the compliant joint, the relationship between the thrust generation and the stiffness of the flexible joint is investigated. In general, as the frequency increases, the thrust increases. When higher driving frequency is applied, higher stiffness of the flexible joint is needed to maximize the thrust. The bending angles between the compliant joint and the caudal fin are compared with the changes of the thrust in one cycle. This result can be used to design the robotic fish which can be operated at the maximum thrust condition using the appropriate stiffness of the compliant joint.

Position Detection and Gathering Swimming Control of Fish Robot Using Color Detection Algorithm (색상 검출 알고리즘을 활용한 물고기로봇의 위치인식과 군집 유영제어)

  • Akbar, Muhammad;Shin, Kyoo Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.510-513
    • /
    • 2016
  • Detecting of the object in image processing is substantial but it depends on the object itself and the environment. An object can be detected either by its shape or color. Color is an essential for pattern recognition and computer vision. It is an attractive feature because of its simplicity and its robustness to scale changes and to detect the positions of the object. Generally, color of an object depends on its characteristics of the perceiving eye and brain. Physically, objects can be said to have color because of the light leaving their surfaces. Here, we conducted experiment in the aquarium fish tank. Different color of fish robots are mimic the natural swim of fish. Unfortunately, in the underwater medium, the colors are modified by attenuation and difficult to identify the color for moving objects. We consider the fish motion as a moving object and coordinates are found at every instinct of the aquarium to detect the position of the fish robot using OpenCV color detection. In this paper, we proposed to identify the position of the fish robot by their color and use the position data to control the fish robot gathering in one point in the fish tank through serial communication using RF module. It was verified by the performance test of detecting the position of the fish robot.

Implementation of Fish Robot Tracking-Control Methods (물고기 로봇 추적 제어 구현)

  • Lee, Nam-Gu;Kim, Byeong-Jun;Shin, Kyoo-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.885-888
    • /
    • 2018
  • This paper researches a way of detecting fish robots moving in an aquarium. The fish robot was designed and developed for interactions with humans in aquariums. It was studied merely to detect a moving object in an aquarium because we need to find the positions of moving fish robots. The intention is to recognize the location of robotic fish using an image processing technique and a video camera. This method is used to obtain the velocity for each pixel in an image, and assumes a constant velocity in each video frame to obtain positions of fish robots by comparing sequential video frames. By using this positional data, we compute the distance between fish robots using a mathematical expression, and determine which fish robot is leading and which one is lagging. Then, the lead robot will wait for the lagging robot until it reaches the lead robot. The process runs continuously. This system is exhibited in the Busan Science Museum, satisfying a performance test of this algorithm.

A Study of Detecting Fish Robot Position using the Comparing Image Data Algorithm (이미지 비교 알고리즘을 이용한 물고기 로봇 위치 탐지 연구)

  • Musunuri, Yogendra Rao;Jeon, UYeol;Shin, KyooJae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1341-1344
    • /
    • 2015
  • In this paper, the designed fish robot is researched and developed for aquarium underwater robot. This paper is a study on how the outside technology merely to find the location of fish robots without specific sensor or internal devices. This model is designed to detect the position of the Robotic Fish in the Mat lab and Simulink. This intends to recognize the shape of the tank via a video device such as a camera or camcorder using an image processing technique to identify the location of the robotic fishes. Here, we are applied the two methods, one is Hom - Schunk Method and second one is newly proposed method that is the comparing image data algorithm. The Horn - Schunck Method is used to obtain the velocity for each pixel in the image and the comparing image data algorithm is proposed to obtain the position with comparing two video frames and assumes a constant velocity in each video frame.

A Study of Detecting The Fish Robot Position Using The Object Boundary Algorithm (물체 형상인식 알고리즘을 이용한 물고기 로봇 위치 검출에 관한 연구)

  • Amarnath, Varma Angani;Kang, Min Jeong;Shin, Kyoo Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1350-1353
    • /
    • 2015
  • In this paper, we have researched about how to detect the fish robot objects in aquarium. We had used designed fish robots DOMI ver1.0, which had researched and developed for aquarium underwater robot. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. We are planned to non-external equipment to find the position and manipulated the position using creating boundary to fish robot to detect the fish robot objects. Also, we focused the detecting fish robot in aquarium by using boundary algorithm. In order to the find the object boundary, it is filtering the video frame to picture frames and changing the RGB to gray. Then, applied the boundary algorithm stand of equations which operates the boundary for objects. We called these procedures is kind of image processing that can distinguish the objects and background in the captured video frames. It was confirmed that excellent performance in the field test such as filtering image, object detecting and boundary algorithm.