• Title/Summary/Keyword: 문헌 인용 네트워크

Search Result 63, Processing Time 0.029 seconds

An Investigation of Intellectual Structure on Data Papers Published in Data Journals in Web of Science (Web of Science 데이터학술지 게재 데이터논문의 지적구조 규명)

  • Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.1
    • /
    • pp.153-177
    • /
    • 2020
  • In the context of open science, data sharing and reuse are becoming important researchers' activities. Among the discussions about data sharing and reuse, data journals and data papers shows visible results. Data journals are published in many academic fields, and the number of papers is increasing. Unlike the data itself, data papers contain activities that cite and receive citations, thus creating their own intellectual structures. This study analyzed 14 data journals indexed by Web of Science, 6,086 data papers and 84,908 cited references to examine the intellectual structure of data journals and data papers in academic community. Along with the author's details, the co-citation analysis and bibliographic coupling analysis were visualized in network to identify the detailed subject areas. The results of the analysis show that the frequent authors, affiliated institutions, and countries are different from that of traditional journal papers. These results can be interpreted as mainly because the authors who can easily produce data publish data papers. In both co-citation and bibliographic analysis, analytical tools, databases, and genome composition were the main subtopic areas. The co-citation analysis resulted in nine clusters, with specific subject areas being water quality and climate. The bibliographic analysis consisted of a total of 27 components, and detailed subject areas such as ocean and atmosphere were identified in addition to water quality and climate. Notably, the subject areas of the social sciences have also emerged.

Comparative Analysis on the Relationships between the Centralities in Co-authorship Networks and Research Performance Considering the Number of Co-authors (공저자 수를 고려한 공저 네트워크 중심성과 연구성과의 연관성 분석)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.4
    • /
    • pp.175-199
    • /
    • 2016
  • We analyzed the relationships between the co-authorship network centralities and the research performance indicators with the authors and the number of citations of the papers published for 10 years in Korean library and information science journals. In particular, the research performance indicators were calculated with normal counting and with fractional counting also. As a result of correlation analysis between the variables by setting the different ranges of the author groups to be analyzed according to the number of articles, it was possible to explain the inconsistent results of the previous studies on the correlations between the researchers' citation indicators and their co-authorship network centralities. Overall, the degree of co-authorship activities measured by collaboration coefficient showed no or negatively correlated with research performance. There were statistically significant positive correlations between the centralities and the research performance indicators, but the correlation was not significant in the analysis of the top 30 authors by number of articles.

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

An Investigation on the Network Analysis Papers by Content Analysis and Bibliometric Analysis (네트워크 분석 논문의 고찰: 계량서지적 분석과 내용분석을 중심으로)

  • Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.1
    • /
    • pp.169-190
    • /
    • 2021
  • Research in various academic fields using network analysis techniques has been conducted and grown. This study performed bibliographical analysis and content analysis on a total of 2,187 network analysis papers published in journals from 2003 to 2021. The results showed that the fields of Pedagogy, Interdisciplinary Research, Computer Science, Library and Information Science, Public Administration, and Business Administration were higher in terms of the number of research papers. From the perspective of journal, mega-journals were indicated as the most productive journals. However, when looking at the impact based on the number of citations, the strength of Public Administration, Library and Information Science, and Pedagogy is clearly revealed. The results of the analysis by authors can also confirm the higher impact of Journalism, Public Administration Science, and Library and Information Science. Of the 1,537 authors identified, very few authors are active in research, confirming the need to expand the researcher base. The results of content analysis showed that the weighted and non-directional network was the most common network type with using the research papers as a data set. Generally nodes are expressed as words and links are expressed as relationship. For network analysis, the use of KrKwic, UCINET, NetMiner, and NetDraw is the most prominent.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

A Study on the Intellectual Structure of Library and Information Science in Korea by Author Bibliographic Coupling Analysis (저자서지결합분석에 의한 문헌정보학의 지적구조 분석에 관한 연구)

  • Park, Ji Yeon;Jeong, Dong Youl
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.4
    • /
    • pp.31-59
    • /
    • 2013
  • The purpose of this study was to examine the intellectual structure of domestic LIS in the 1990s and 2000s using author bibliographic coupling analysis (ABCA). First, cluster analysis and multi-dimensional scaling analysis were performed to examine core subject areas and to map authors in two-dimensional space. Second, network analysis was used to visualize intellectual relationships among subject areas and to reveal the top subject areas for global centrality. Third, the 1990s and 2000s intellectual structures was compared to identify the changes of the intellectual structure over the course of time.

Collaboration Networks and Document Networks in Informetrics Research from 2001 to 2011: Finding Influential Nations, Institutions, Documents (계량정보학분야의 협력연구 네트워크 및 문헌네트워크 분석 : 국가, 기관, 문헌단위 분석)

  • Lee, Jae Yun;Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.179-191
    • /
    • 2013
  • Since information scientists have begun trying to quantify significant research trends in scientific publications, '-metrics' research such as 'bibliometrics', 'scientometrics', 'informetrics', 'webometrics', and 'citation analysis' have been identified as crucial areas of information science. To illustrate the dynamic research activities in these areas, this study investigated the major contributors of '-metrics' research for the last decade at three levels: nations, institutions, and documents. '-metrics' literature of this study was obtained from the Science Citation Index for the years 2001-2011. In this analysis, we used Pathfinder network, PNNC algorithm, PageRank and several indicators based on h-index. In terms of international collaborations, USA and England were identified as major countries. At the institutional level, Katholieke University, Leuven and the University of Amsterdam in Europe and Indiana University and the Office of Naval Research in the USA have led co-research projects in informetrics areas. At the document level, Hirsch's h-index paper and Ingwersen's web impact factor paper were identified as the most influential work by two methods: PageRank and single paper h-index.

Analyzing the Main Paths and Intellectual Structure of the Data Literacy Research Domain (데이터 리터러시 연구 분야의 주경로와 지적구조 분석)

  • Jae Yun Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.403-428
    • /
    • 2023
  • This study investigates the development path and intellectual structure of data literacy research, aiming to identify emerging topics in the field. A comprehensive search for data literacy-related articles on the Web of Science reveals that the field is primarily concentrated in Education & Educational Research and Information Science & Library Science, accounting for nearly 60% of the total. Citation network analysis, employing the PageRank algorithm, identifies key papers with high citation impact across various topics. To accurately trace the development path of data literacy research, an enhanced PageRank main path algorithm is developed, which overcomes the limitations of existing methods confined to the Education & Educational Research field. Keyword bibliographic coupling analysis is employed to unravel the intellectual structure of data literacy research. Utilizing the PNNC algorithm, the detailed structure and clusters of the derived keyword bibliographic coupling network are revealed, including two large clusters, one with two smaller clusters and the other with five smaller clusters. The growth index and mean publishing year of each keyword and cluster are measured to pinpoint emerging topics. The analysis highlights the emergence of critical data literacy for social justice in higher education amidst the ongoing pandemic and the rise of AI chatbots. The enhanced PageRank main path algorithm, developed in this study, demonstrates its effectiveness in identifying parallel research streams developing across different fields.

A Novel Methodology for Extracting Core Technology and Patents by IP Mining (핵심 기술 및 특허 추출을 위한 IP 마이닝에 관한 연구)

  • Kim, Hyun Woo;Kim, Jongchan;Lee, Joonhyuck;Park, Sangsung;Jang, Dongsik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • Society has been developed through analogue, digital, and smart era. Every technology is going through consistent changes and rapid developments. In this competitive society, R&D strategy establishment is significantly useful and helpful for improving technology competitiveness. A patent document includes technical and legal rights information such as title, abstract, description, claim, and patent classification code. From the patent document, a lot of people can understand and collect legal and technical information. This unique feature of patent can be quantitatively applied for technology analysis. This research paper proposes a methodology for extracting core technology and patents based on quantitative methods. Statistical analysis and social network analysis are applied to IPC codes in order to extract core technologies with active R&D and high centralities. Then, core patents are also extracted by analyzing citation and family information.

Topic Modeling based Interdisciplinarity Measurement in the Informatics Related Journals (토픽 모델링 기반 정보학 분야 학술지의 학제성 측정 연구)

  • Jin, Seol A;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.7-32
    • /
    • 2016
  • This study has measured interdisciplinarity using a topic modeling, which automatically extracts sub-topics based on term information appeared in documents group unlike the traditional top-down approach employing the references and classification system as a basis. We used titles and abstracts of the articles published in top 20 journals for the past five years by the 5-year impact factor under the category of 'Information & Library Science' in JCR 2013. We applied 'Discipline Diversity' and 'Network Coherence' as factors in measuring interdisciplinarity; 'Shannon Entropy Index' and 'Stirling Diversity Index' were used as indices to gauge diversity of fields while topic network's average path length was employed as an index representing network cohesion. After classifying the types of interdisciplinarity with the diversity and cohesion indices produced, we compared the topic networks of journals that represent each type. As a result, we found that the text-based diversity index showed different ranking when compared to the reference-based diversity index. This signifies that those two indices can be utilized complimentarily. It was also confirmed that the characteristics and interconnectedness of the sub-topics dealt with in each journal can be intuitively understood through the topic networks classified by considering both the diversity and cohesion. In conclusion, the topic modeling-based measurement of interdisciplinarity that this study proposed was confirmed to be applicable serving multiple roles in showing the interdisciplinarity of the journals.