• Title/Summary/Keyword: 문장틀 기반 생성

Search Result 4, Processing Time 0.019 seconds

Template Constrained Sequence to Sequence based Conversational Utterance Error Correction Method (문장틀 기반 Sequence to Sequence 구어체 문장 문법 교정기)

  • Jeesu Jung;Seyoun Won;Hyein Seo;Sangkeun Jung;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.553-558
    • /
    • 2022
  • 최근, 구어체 데이터에 대한 자연어처리 응용 기술이 늘어나고 있다. 구어체 문장은 소통 방식 등의 형태로 인해 정제되지 않은 형태로써, 필연적으로 띄어쓰기, 문장 왜곡 등의 다양한 문법적 오류를 포함한다. 자동 문법 교정기는 이러한 구어체 데이터의 전처리 및 일차적 정제 도구로써 활용된다. 사전학습된 트랜스포머 기반 문장 생성 연구가 활발해지며, 이를 활용한 자동 문법 교정기 역시 연구되고 있다. 트랜스포머 기반 문장 교정 시, 교정의 필요 유무를 잘못 판단하여, 오류가 생기게 된다. 이러한 오류는 대체로 문맥에 혼동을 주는 단어의 등장으로 인해 발생한다. 본 논문은 트랜스포머 기반 문법 교정기의 오류를 보강하기 위한 방식으로써, 필요하지 않은 형태소인 고유명사를 마스킹한 입력 및 출력 문장틀 형태를 제안하며, 이러한 문장틀에 대해 고유명사를 복원한 경우 성능이 증강됨을 보인다.

  • PDF

Feature-based Korean Phrase Structure Grammar adjusting X-bar Theory (X-바 이론을 변형한 자질기반의 한국어 구구조 문법)

  • Park, So-Young;Hwang, Young-Sook;Chung, Hoo-Jung;Kwak, Yong-Jae;Rim, Hae-Chabg
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.222-229
    • /
    • 1998
  • 본 논문에서는 X-바 이론을 한국어에 적용하여 서로 다른 범주들간의 구조적 일반성을 파악하고, 한국어에 가능한 규칙만을 허용하여 불가능한 규칙을 배제시킬 수 있는 틀을 제시하고자 한다. 한국어가 비중심어간 어순이 자유롭고 기능어가 발달했다는 점을 고려하여, 중심어와 보충어 관계 중심의 기존 X-바 이론을 통사적 파생과 의미적 파생, 수식 및 하위범주의 관계를 중심으로 변형한다. 또한, 한국어의 빈번한 생략현상과 부분 자유 어순에 효과적으로 대응할 수 있도록 이진결합 중심의 CNF(Chomsky Normal Form)를 따른다. 제안하는 자질기반의 한국어 구구조 문법은 직관적이고 간단하면서도 대부분의 문장을 처리할 수 있을 만큼 표현력이 뛰어나다는 장점이 있다. 신문기사에서 454문장을 추출하여 실험한 결과, 약 97%의 문장에 대해 올바른 구문 분석 결과를 생성할 수 있음을 보였다.

  • PDF

Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning (머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구)

  • Lee, Gyeong-Geon;Ha, Heesoo;Hong, Hun-Gi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.219-234
    • /
    • 2018
  • In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.

AI Crime Prediction Modeling Based on Judgment and the 8 Principles (판결문과 8하원칙에 기반한 인공지능 범죄 예측 모델링)

  • Hye-sung Jung;Eun-bi Cho;Jeong-hyeon Chang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • In the 4th industrial revolution, the field of criminal justice is paying attention to Legaltech using artificial intelligence to provide efficient legal services. This paper attempted to create a crime prediction model that can apply Recurrent Neural Network(RNN) to increase the potential for using legal technology in the domestic criminal justice field. To this end, the crime process was divided into pre, during, and post stages based on the criminal facts described in the judgment, utilizing crime script analysis techniques. In addition, at each time point, the method and evidence of crime were classified into objects, actions, and environments based on the sentence composition elements and the 8 principles of investigation. The case summary analysis framework derived from this study can contribute to establishing situational crime prevention strategies because it is easy to identify typical patterns of specific crime methods. Furthermore, the results of this study can be used as a useful reference for research on generating crime situation prediction data based on RNN models in future follow-up studies.