다양한 발화를 모델링하는 요구는 자연어 처리 분야에서 꾸준히 있었으며 단어, 구 또는 문장과 동등한 의미 콘텐츠를 자동으로 식별하고 생성하는 것은 자연어 처리의 중요한 부분이다. 본 논문에서는 포인터 생성 네트워크(Pointer Generate Nework)를 이용하여 패러프레이즈 생성 모델을 제안한다. 제안한 모델의 성능을 측정하기 위해 사람이 직접 구축한 유사 문장 코퍼스를 이용하였으며, 토큰 단위의 BLEU-4 0.250, ROUGE_L 0.455, CIDEr 2.190의 성능을 보였다. 하지만 입력 문장과 동일한 문장을 출력하는 문제점이 존재하여 빔서치(beam search)를 적용하여 입력 문장과 비교하여 생성 문장을 선택하는 방식을 적용하였다. 입력 문장과 동일한 문장을 제외한 문장으로 평가를 진행했으며, 토큰 단위의 BLEU-4 0.234, ROUGE_L 0.459, CIDEr 2.041의 성능을 보였으나, 패러프레이즈 생성 데이터 양이 크게 증가하였다. 본 연구는 문장 간의 의미적으로 동일한 정보를 정확하게 추출할 수 있게 됨으로써 정보 추출, 온톨로지 생성에 도움이 될 것이다. 또한 이러한 기법이 챗봇에서 사용자의 의도 탐지 및 MRC와 같은 자연어 처리의 여러 분야에 유용한 자원으로 사용될 것이다.
문서 요약은 쉽고 빠르게 문서의 내용을 파악할 수 있도록 방대한 내용을 가지는 다양한 형태의 문서로부터 핵심 내용만을 추출하거나 생성하여 제공하는 것을 목적으로 한다. 본 논문에서는 효율적 문서 요약을 위해 주어진 문서의 평균 문장 길이(핵심어 개수)를 고려하여 문장 간의 핵심어 유사도를 나타내는 연결 그래프를 생성하고 분석하여 요약을 생성하는 기법을 제안한다. 또한 이러한 기법을 이용하여 응용 프로그램 문서로부터 자동으로 요약을 생성하는 자동 문서 요약 시스템을 개발한다. 제안한 방법의 객관적인 요약 성능 측정을 위해 정확한 요약문이 실린 20개의 테스트 문서를 이용하여 생성된 요약에 대해 precision(정확률)과 recall(재현율), F-measure를 측정하였으며, 실험 결과를 통해 기존 기법에 비해 우수한 요약 성능을 보임을 증명하였다.
인터넷의 발달로 대량의 전자문서들을 손쉽게 구할 수 있는 정보의 바다라 불리는 현대사회에서 논문 표절은 심각한 문제를 안게 되었다. 표절여부를 검사하는 방법에는 여러 가지가 있지만 보다 정확하고 빠르게 검출할 수 있는 기법이 요구된다. 외국에서는 표절을 검사하기 위한 시스템적인 접근이 이루어지고 있지만 국내에서의 표절 검사에 대한 연구는 아직 초기 단계에 있다. 본 논문에서는 논문 표절 검사 시스템에 사용되는 기법 중 지문법을 바탕으로 하지만 기존의 단어, 문장 등을 사용하는 방법과 차별을 두어 몇몇 주요 단어와 특정 조사의 비교를 이용해 유사성을 측정하여 보다 빠르고 정확하게 검출할 수 있는 시스템을 구현해 보았다.
인공지능(Artificial Intelligence) 기술을 활용하여 인공지능 기반의 전쟁 (AI-enabled warfare)가 미래전의 핵심이 될 것으로 예상한다. 자연어 처리 기술은 이러한 AI 기술의 핵심 기술로 지휘관 및 참모들이 자연어로 작성된 보고서, 정보 및 첩보를 일일이 열어확인하는 부담을 줄이는데 획기적으로 기여할 수 있다. 본 논문에서는 지휘관 및 참모의 정보 처리 부담을 줄이고 신속한 지휘결심을 지원하기 위해 언어 모델 기반의 다출처 정보 통합 (Language model-based Multi-source Information Integration, LAMII) 프레임워크를 제안한다. 제안된 LAMII 프레임워크는 자기지도 학습법을 활용한 언어 모델에 기반한 표현학습과 오토인코더를 활용한 문서 통합의 핵심 단계로 구성되어 있다. 첫 번째 단계에서는, 자기지도 학습 기법을 활용하여 구조적으로 이질적인 두 문장간의 유사 관계를 식별할 수 있는 표현학습을 수행한다. 두 번째 단계에서는, 앞서 학습된 모델을 활용하여 다출처로부터 비슷한 내용 혹은 토픽을 함양하는 문서들을 발견하고 이들을 통합한다. 이 때, 중복되는 문장을 제거하기 위해 오토인코더를 활용하여 문장의 중복성을 측정한다. 본 논문의 우수성을 입증하기 위해, 우리는 언어모델들과 이의 성능을 평가할 때 활용되는 대표적인 벤치마크 셋들을 함께 활용하여 이질적인 문장간의 유사 관계를 예측의 비교 실험하였다. 실험 결과, 제안된 LAMII 프레임워크가 다른 언어 모델에 비하여 이질적인 문장 구조간의 유사 관계를 효과적으로 예측할 수 있음을 입증하였다.
본 논문에서는 기계번역에서 동사 번역의 모호성 해결을 위한 하이브리드 기법을 제안한다. 제안된 기법은 동사 번역을 위해 개념기반의 기법과 통계기반의 기법을 수행하는 알고리즘이다. 이를 위해 연어사전, WordNet과 말뭉치에서 추출한 통계 정보를 이용한다. 동사 번역의 모호성을 해결하기 위하여 이 알고리즘은 기계번역의 트랜스퍼 단게에서 번역할 동사의 번역어를 찾는다. 그러나 만일 적절한 번역어를 찾지 못하게 되면, Wordnet을 참조하여 번역 문장에서 동사의 논리적 제약어와 연어사전의 논리적 제약어들 사이의 단어간 유사도를 측정하여 번역어를 찾는다. 그리고 이와 동시에 이 알고리즘은 말뭉치에서 추출한 통계 정보를 참조하여 공기 유사도를 측정하여 번역어를 찾는다. 실험 결과, 이 알고리즘은 번역 정확성에서 기존의 다른 알고리즘보다 우수하며, 특히 연어기반의 기법과 비교할 때 약 24.8% 정도의 번역 정확성이 향상된 것으로 나타나고 있다.
본 연구의 목적은 시맨틱 검색 기법을 활용하여 사용자 쿼리 기반의 타당한 정확도를 가진 관광지 랭킹시스템을 설계하는 것이다. 이를 위해 관광지에 대한 텍스트 리뷰 데이터 수집, 데이터 전처리 및 SBERT를 활용한 임베딩 과정을 거쳤다. 이후 유사도를 측정하고 임계값을 충족하는 데이터를 필터링한 후 카운트 기반 랭킹 알고리즘을 적용하여 쿼리와 의미적으로 유사한 순서로 관광지 순위를 도출하였다. 제안된 랭킹 알고리즘의 평가를 위해 4개의 쿼리로 실험을 진행하여 연관성이 높은 상위 5개 관광지를 도출하였다. 도출된 결과값의 비교를 위해 58,175개의 문장에 직접 라벨을 붙여 세 번째 쿼리인 혼잡도와 의미적으로 연관성이 있는지를 확인하였다. 두 결과값이 유사하여 본 연구에서 제시된 랭킹 알고리즘의 효율성이 검증되었다. 임계값 최적화, 데이터 불균형 등의 문제에도 불구하고 이 연구는 시맨틱 검색 기법을 이용하여 적은 비용과 시간으로도 사용자의 의도를 파악하여 관광지를 추천하는 것이 가능하다는 것을 보여주었다.
정보 검색에서 원하는 정보를 얻지 못하는 원인은 다양하다. 그 중에서도 표기의 다양성은 검색 시 불일치로 인한 정보 누락을 발생시키는 원인이 된다. 본 논문은 이러한 불일치에 의한 정보 누락을 최소화하기 위하여 검색 대체어 후보를 자동 생성하는 방법을 제안한다. 본 연구에서 제안하는 대체어 후보 자동 생성 방법은 문장 내에서 함께 쓰이는 단어들이 비슷한 두 단어는 서로 비슷한 의미를 지닐 것이다라는 직관적 가설을 전제로 한다. 이와 같은 가설을 기반으로 하여 본 연구에서는 분류별 집중도, 신뢰도를 이용한 연관단어 뭉치, 연관단어 뭉치 간 코사인 유사도 및 신뢰도를 이용한 필터링 기법 등을 이용한 대체어 후보 자동 생성 방법을 제안한다. 본 연구에서 제안한 대체어 후보 자동 생성 방법의 성능은 대체어 유형별로 작성된 평가지표를 이용하여 정확도 및 재현율을 측정함으로써 평가되었으며, 제안 방법이 context window overlapping을 이용한 대체어 추출 방법보다 더 우수한 것으로 나타났다.
특허 정보 검색은 연구 및 기술 개발에 앞서 선행연구의 존재 여부를 확인하기 위한 사전 조사 목적으로 주로 사용된다. 이러한 특히 정보 검색에서 원하는 정보를 얻지 못하는 원인은 다양하다. 그 중에서 본 연구는 키워드 불일치에 의한 정보 누락을 최소화하기 위한 대체어 후보 추출 방법을 제안한다. 본 연구에서 제안하는 대체어 후보 추출 방법은 문장 내에서 함께 쓰이는 단어들이 비슷한 두 단어는 서로 비슷한 의미를 지닐 것이다라는 직관적 가설을 전제로 한다. 이와 같은 가설을 만족하는 대체어를 추출하기 위해서 본 연구에서는 분류별 집중도, 신뢰도를 이용한 연관단어뭉치, 연관단어 뭉치간 코사인 유사도 및 순위 보정 기법을 제안한다. 본 연구에서 제안한 대체어 후보 추출 방법의 성능은 대체어 유형별로 작성된 평가지표를 이용하여 재현율을 측정함으로써 평가하였으며, 제안 방법이 문서 벡터공간 모델의 성능보다 더 우수한 것으로 나타났다.
다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.