• 제목/요약/키워드: 문장검색

검색결과 258건 처리시간 0.022초

정보 검색 시스템의 성능 향상을 위한 구문 분석과 검색어 확장 (Syntactic Analysis and Keyword Expansion for Performance Enhancement of Information Retrieval System)

  • 윤성희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.139-142
    • /
    • 2004
  • 자연어 질의 문장을 입력하는 방법은 정보 검색 시스템 사용자에게 아주 이상적인 인터페이스이다. 검색을 위해 색인어를 입력하거나 불리언 질의식을 사용하는 것에 비해 훨씬 친밀하지만, 동일한 의도의 검색 요구에 대해서도 개인의 성향에 따라서 다양한 형태나 구조의 자연어 질의문장으로 입력될 수 있는 본질적인 특성이 있다. 본 논문은 자연어 질의문장을 입력으로 하는 검색 시스템을 위해 사용자의 입력 질의 문장을 분석하고 검색어를 확장하는 다중 검색 기법을 제안한다. 질의 문장에 대한 형태소 분석 및 구문 분석을 수행하고, 구문 트리를 순회하여 구조적으로 연관된 복합명사를 조합하거나 분할하고 이형 표기 용어와 축약 표기 용어들을 확장하여 다중 검색함으로써 재현율과 정확도를 높일 수 있다.

  • PDF

문장 검색을 위한 색인시스템 구축 : 초 .중등 학생의 한국어 및 영어 문장을 중심으로 (A Construction of Indexing System for Sentence Retrieval)

  • 이태영
    • 정보관리학회지
    • /
    • 제20권1호
    • /
    • pp.145-163
    • /
    • 2003
  • 한국어 및 영어의 글쓰기를 도와주는 문장 및 문단 제공시스템을 구축하기 위하여 색인작성과 탐색시에 필요한 색인언어를 연구하였다. 색인언어로 명사어와 술어 및 부사어를 선정하였고 여러 가지 보조 색인기호들도 추가하였다. 접근점으로 주제명과 키워드를 사용하였고 키워드 검색은 1절, 2절, 3 절, 문맥첨가 탐색을 포함하였다. 검색의 만족도는 긍정적이었으며 데이터베이스의 양과 질을 충실히 보완한다면 문장이나 문단을 제공하여 주는 시스템은 효과적일 수 있다.

개념 속성 기반 정보 검색 (Concept and Attribute based Answer Retrieval)

  • 윤보현;서창호
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 연구에서는 지식검색을 위해 개념 속성을 이용하여 사용자 질의에 가장 적합한 정답 문장들을 검색 할 수 있는 정답검색 시스템을 설계하고 평가한다. 이 시스템은 먼저 사용자 질의를 개념 속성에 대한 불리언 연산으로 분석한 다음, 정답 문서 색인 집합에서 해당 문서들을 검색한다. 사용자는 이 검색된 문서들로부터 자신이 요구한 정답 문장들을 검색할 수 있으며, 또한 특정한 문서를 선택함으로써 그 문서에 포함된 정답 문장들을 검색할 수 있다. 이를 위해서 개념어와 속성어의 색인 단위로 색인된 정답 문서들은 각각의 문장들로 분할되어 색인된다. 그래서 분할된 문장들은 개념어와 속성어 형태로 분석되어 문서 색인 단위와의 관련 정도를 평가함으로써 정답 문장들의 위치를 색인한다. 마지막으로, 100개의 사용자 질의에 대해 정답 검색 시스템의 성능을 다양한 방법으로 평가한다.

  • PDF

Posting File을 이용한 구절 검색 방법 (Phrase search using posting file in Korean Information Retrieval System)

  • 박대원;박민식;박진희;권혁철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.384-386
    • /
    • 2000
  • Posting file은 문서 내의 색인어와 색인어의 위치 정보-문장번호, 어절 번호 등으로 구성한 문서별 색인어 역파일(inverted file)이다. 본 논문에서는 posting file을 구성하고 이를 정보검색시스템에 적용하여 색인어의 어절 거리 계산에 의해 구절 검색이 가능한 정보검색시스템을 소개한다. 또한 사용자 질의문과 가장 유사한 문장을 검색결과 대표문장으로 제시하여 사용자가 검색결과를 쉽게 확인할 수 있는 방법을 제시한다.

  • PDF

유사 적합성 피드백 기반의 문서 요약 기법을 이용한 효과적인 스니펫 생성 (An Effective Snippet Generation Method using Text Summarization Techniques based on Pseudo Relevance Feedback)

  • 안홍국;고영중;서정연
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.174-181
    • /
    • 2007
  • 정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.

  • PDF

어휘 의미 패턴(Lexico-Semantic Pattern)과 온톨로지를 이용한 정보검색기의 설계 및 구현 (The Design and Implementation of an Information Retrieval System Using Lexico-Semantic Pattern and Ontology)

  • 김병우;고영중
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.957-962
    • /
    • 2007
  • 본 논문에서 제안하는 정보 검색기는 일반적인 불리언(Boolean) 질의를 통해서 정보를 검색하는 것이 아니라, 문장으로 입력된 질의형태의 패턴을 분석하여 그에 맞는 정보를 직접 제공하는 것에 목적을 둔다. 이를 위해 어휘 의미 패턴(Lexical Semantic Pattern)과 온톨로지(Ontology) 기술이 정보검색기 개발에 적용되었다. 제안된 시스템에서는 다양한 형태로 표현된 문장 질의를 어휘 의미 패턴을 사용해서 문장의 질의 패턴을 추출하고 사용자 질의를 하나의 온톨로지(Ontology) 추론 질의와 매칭함으로써 질의에 대한 정확한 해답을 추출할 수 있다. 또한, 자연어 문장 입력에 대한 검색 질의 생성기를 구축하고 온톨로지로 표현된 지식을 사용하여 정보검색기 질의를 자동으로 확장함으로써 더욱 정확한 정보 검색 결과를 만들어 낼 수 있다.

  • PDF

집합 기반 POI 검색을 이용한 문장 유사도 측정 기법 (Sentence Similarity Measurement Method Using a Set-based POI Data Search)

  • 고은별;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권12호
    • /
    • pp.711-716
    • /
    • 2014
  • 최근 논문 표절 논란과 지능형 텍스트 검색서비스에 대한 관심이 증가하면서 문장 유사도 측정의 필요성이 증가하고 있다. n-gram, 편집거리, LSA 등 기존의 다양한 방향으로 선행 연구가 있었지만 각 기법마다 장단점이 존재한다. 본 논문에서는 집합 기반 POI 검색 기법을 이용한 새로운 방향의 문장 유사도 측정 기법을 제안한다. 집합 기반 POI 검색 기법은 하드매칭에 비해 단어의 도치, 누락, 삽입, 변경에 현저한 성능 향상을 보인다. 이 기법을 이용하면 보다 정확하고 빠른 문장 유사도 측정이 가능하다. 제안하는 기법은 기존 집합 기반 POI 검색 기법의 데이터 로딩 알고리즘과 텍스트 검색 알고리즘을 변형하고 어절 연산 알고리즘을 추가하여 두 문장의 유사도를 백분율로 표현한다. 실험을 통해 본 논문에서 제시하는 기법이 정확도와 속도에서 n-gram과 기존 집합 기반 POI 검색 기법에 비해 우수함을 확인하였다.

의문문 질의 시스템을 위한 한국어 문장의 의미적 동일성 분석 (An Analysis of Identity of Meaning in Korean Sentence For Questions-Query System)

  • 박홍원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.59-64
    • /
    • 1998
  • 본 논문은 변형된 한국어 문장에 대해 변형 이전의 문장과의 의미적 동일성을 분석하여 한국어 의문문 질의어의 문형과 상이한 문형의 한국어 문장도 정보검색시 검색 대상문에 포함시켜 검색 정확도를 높임으로써 의문문 질의 시스템의 성능을 향상시키는 것에 연구의 초점을 맞추고 있다. 한국어 문장에서 주로 나타나는 피동화에 의한 변형, 분열문에 의한 변형, 명사화에 의한 변형, 어순 재배치에 의한 변형 등의 특성에 대해 알아보고 의문문 질의 시스템에서 그들 각각의 변형을 인식하여 변형 이전의 문장과 동일한 의미의 문장으로 처리하는 방법에 대해서 자세히 살펴보았다.

  • PDF

문장 임베딩을 위한 Cross-Encoder의 Re-Ranker를 적용한 의미 검색 기반 대조적 학습 (Contrastive Learning of Sentence Embeddings utilizing Semantic Search through Re-Ranker of Cross-Encoder)

  • 오동석;김수완;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.473-476
    • /
    • 2022
  • 문장 임베딩은 문장의 의미를 고려하여 모델이 적절하게 의미적인 벡터 공간에 표상하는 것이다. 문장 임베딩을 위해 다양한 방법들이 제안되었지만, 최근 가장 높은 성능을 보이는 방법은 대조적 학습 방법이다. 대조적 학습을 이용한 문장 임베딩은 문장의 의미가 의미적으로 유사하면 가까운 공간에 배치하고, 그렇지 않으면 멀게 배치하도록 학습하는 방법이다. 이러한 대조적 학습은 비지도와 지도 학습 방법이 존재하는데, 본 논문에서는 효과적인 비지도 학습방법을 제안한다. 기존의 비지도 학습 방법은 문장 표현을 학습하는 언어모델이 자체적인 정보를 활용하여 문장의 의미를 구별한다. 그러나, 하나의 모델이 판단하는 정보로만 문장 표현을 학습하는 것은 편향적으로 학습될 수 있기 때문에 한계가 존재한다. 따라서 본 논문에서는 Cross-Encoder의 Re-Ranker를 통한 의미 검색으로부터 추천된 문장 쌍을 학습하여 기존 모델의 성능을 개선한다. 결과적으로, STS 테스크에서 베이스라인보다 2% 정도 더 높은 성능을 보여준다.

  • PDF

검색어 생성을 위한 딥 러닝 기반 문장 분석 연구 (Deep Learning based Sentence Analysis for Query Generation)

  • 나성원;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.336-337
    • /
    • 2018
  • 최근 이미지의 Visual 정보를 추출하고 Multi label 분류를 통해 나온 결과의 상관관계를 modeling하여 문장으로 출력하는 CNN-RNN 아키텍처가 많은 발전을 이뤘다. 이 아키텍처의 출력은 이미지의 정보가 요약되어 문장으로 표현되기 때문에 Semantic정보가 풍부하여 유사 콘텐츠 검색에도 사용 가능하다. 하지만 결과 문장에 사람이 포함 되면 광범위한 검색 결과를 얻게 되고 부정확한 결과를 초래하게 된다. 이에 본 논문에서는 문장에서 사람을 인식하여 Identity를 부여함으로써 검색어를 좀 더 구체적으로 생성하고자 한다. 이 문제를 해결하기 위해 자연어 처리의 분야 중 하나인 개체명 인식(Named Entity Recognition) 문제로 다루며, 가장 많이 사용되고 있는 모델인 Bidirectional-LSTM-CRF와 CoNLL2003 dataset을 사용하여 수행 한다.

  • PDF