• 제목/요약/키워드: 문자패턴

검색결과 297건 처리시간 0.022초

퍼지 동적 학습률 제어 기반 하이브리드 RBF 네트워크 (A Hybrid RBF Network based on Fuzzy Dynamic Learning Rate Control)

  • 김광백;박충식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.33-38
    • /
    • 2014
  • FCM 기반하이브리드 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 알고리즘을 적용한다. 입력층과 중간층의 학습시 입력 벡터와 중간층의 노드 중에서 중심과 입력 벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습구조인 Max_Min 신경망은 중간층의 승자 뉴런이 입력벡터로 적용된다. 그러나 많은 패턴이 입력벡터로 제시될 경우에는 학습성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 향상시키기 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 0.1보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 제어 시스템에 적용하여 학습률을 동적으로 조정한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해 컨테이너에서 추출한 숫자, 영문 식별자를 인식 및 성능평가 실험에 적용한 결과, 제안된 방법이 문자 패턴 인식에 효과적임을 확인할 수 있었다.

개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구 (A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm)

  • 임은경;김광백
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.433-444
    • /
    • 2000
  • 본 논문은 개선된 퍼지 ART알고리즘을 이용한 차량 번호판 인식에 대한 연구이다. 차량 영상에서 번호판 영역을 추출하기 위해 수평·수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 SOFM을 적용한 윤곽선(Contour)추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 개선된 퍼지 ART알고리즘을 사용한다. 본 논문에서 제안한 퍼지 ART알고리즘은 클러스터링 하는데 있어서 임의의 패턴과 저장된 패턴사이의 불일치 허용도를 나타내는 유사도(vigilance threshold)를 동적으로 설정함으로써 기존의 퍼지 ART 알고리즘을 개선한다. 추출 실험 결과, 수평·수직 에지의 형태학적 정보를 이용한 추출 방법이 RGB와 HSI 컬러 정보를 이용한 추출 방법보다 추출율이 개선되었다. 인식 결과에서도 개선된 퍼지 ART알고리즘이 기존의 퍼지 ART 알고리즘과 SOFM 알고리즘보다 인식율이 향상되었다.

  • PDF

단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화 (English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology)

  • 장대흥
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.373-386
    • /
    • 2014
  • 단어 구름은 문자 텍스트 상의 복수개의 단어들을 대상으로 그 단어들의 출현 빈도에 비례하는 글자의 크기나 글자의 색깔로 중요도를 나타내는 텍스트 시각화 방법이다. 이 그림은 텍스트 상의 핵심단어를 재빨리 인지하고 단어들의 상대적 출현빈도수에 맞추어 배열하는 데 유용하다. 동적 그래픽스를 이용하여 텍스트 장들의 변화에 따른 핵심단어와 단어출현빈도의 패턴의 변하는 모습을 살필 수 있다. 행들이 텍스트 상의 장들이고 열들이 텍스트에 출현하는 단어들의 출현빈도수 순위들인 단어출현빈도행렬을 정의할 수 있고 이 행렬을 이용하여 단어출현빈도행렬그림을 그릴 수 있다. 동적 그래픽스를 이용하여 출현빈도수 순위의 변화에 따른 단어출현빈도행렬의 패턴의 변하는 모습을 살필 수 있다. 우리는 단어 구름과 동적 그래픽스 기법을 사용하여 영어성경 텍스트 시각화를 수행할 수 있다.

Lifelong Machine Learning 기반 스팸 메시지 필터링 방법 (A Method for Spam Message Filtering Based on Lifelong Machine Learning)

  • 안연선;정옥란
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1393-1399
    • /
    • 2019
  • 인터넷의 급속한 성장으로 데이터의 송수신의 편리성과 비용이 들지 않는다는 장점 때문에 매일 수백만 건의 무차별적인 광고성 스팸 문자와 메일이 발송되고 있다. 아직은 스팸 단어나 스팸 번호를 차단하는 방법을 주로 사용하지만, 기계 학습이 떠오름에 따라 스팸을 필터링하는 방법에 대해 다양한 방식으로 활발히 연구되고 있다. 그러나 스팸에서만 등장하는 단어나 패턴은 스팸 필터링 시스템에 의해 걸러지지 않기 위해 지속적으로 변화하고 있기 때문에, 기존 기계 학습 메커니즘으로는 새로운 단어와 패턴을 감지, 적응할 수 없다. 최근 이러한 기존 기계 학습의 한계점을 극복하기 위해 기존의 지식을 활용하여 새로운 지식을 지속적으로 학습하도록 하는 Lifelong Learning(이하 LL)의 개념이 대두되었다. 본 논문에서는 문서 분류에 가장 많이 사용되는 나이브 베이즈와 Lifelong Machine Learning(이하 LLML)의 앙상블 기법을 이용한 스팸 메시지 필터링 방법을 제안한다. 우리는 기존 스팸 필터링 시스템에 가장 많이 사용되는 나이브 베이즈와, LLML 모델 중 ELLA를 적용하여 LL의 성능을 검증한다.

치매환자의 보호를 위한 스마트 앱 개발 (Development of a Smart Application for Protecting Dementia Patients)

  • 황현숙;고윤성;반가운;김창수
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1089-1097
    • /
    • 2013
  • 초기 증상을 가진 재가 치매 환자부터 심각한 증상을 가져 병원에 있는 치매 환자까지 다양한 형태로 발생되고 있으나 환자의 위치와 생활 패턴을 고려한 시스템에 대한 연구는 미흡한 실정이다. 본 논문에서는 치매 환자의 일정에 따른 안전반경과 현 위치의 행동 상태 정보를 등록하여 지도 기반의 위치 표출 및 위험문자 알림서비스를 제공하는 치매 환자 가족을 위한 안드로이드 기반의 치매 환자 관리 어플리케이션을 개발한다. 치매환자의 행동 상태를 정상적인 상태와 이탈 및 배회인 비정상적인 상태로 분류한다. 이탈은 환자가 환자의 일정에 등록되어 있는 위치의 안전반경 범위에 있지 않을 경우에, 배회는 한 번 지나온 위치를 반복하는 경우일 때 설정된다. 본 어플리케이션은 환자 위치 전송, 사용자 정보, 환자 일정 및 안전반경 등록, 이동위치 및 행동 상태 등록, 이동경로 표출 및 알림, 구조 요청 모듈로 구성된다. 치매 환자의 가족은 본 앱을 사용하여 환자의 이동 위치 알림서비스와 환자가 안전 반경을 이탈하거나 배회 행동을 할 경우 위험 알림서비스 및 구조요청 서비스를 제공받을 수 있다.

이미지 워터마킹을 위한 Fresnel 변환을 이용한 데이타 삽입 기법 (A Data Embedding Technique for Image Watermarking using Fresnel Transform)

  • Seok Kang;Yoshinao Aoki
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권1호
    • /
    • pp.70-76
    • /
    • 2003
  • 디지털 워터마킹은 이미지, 사운드와 같은 멀티미디어 데이타에 지각할 수 없도록 비밀 정보를 삽입하는 기법이다. 일반적으로 주파수 영역 워터마킹 기법에서는 원 이미지에 대해 주파수 변환을 하고, 그 변환 면에 부호화된 워터마크 데이타를 삽입한다. 본 논문에서 우리는 Fresnel 변환을 이용한 새로운 워터마크 데이타 삽입 기법을 제안한다. 워터마크 이미지를 Fresnel 변환시켜 얻은 패턴의 값들을 원 이미지에 삽입한다. 본 워터마킹 모델은, 하나의 워터마크 이미지로부터 Fresnel 변환의 거리 파라미터의 값에 변화를 줌으로써 다양한 삽입 패턴을 얻을 수 있음으로 인해 데이타 삽입에 있어서 유연성을 가진다. 또한 도형, 문자, 사진과 같은 모든 종류의 이미지를 워터마크 데이타로 사용하는 것이 가능하다. 제안된 기법의 유효성을 검증하기 위한 실험 결과, 손실 압축, 필터링, 기하학적 변환 등의 공격에 대해 내성을 지니고 있음을 보였다.

이진 삼차 재귀 신경망과 유전자 알고리즘을 이용한 문맥-자유 문법의 추론 (Inference of Context-Free Grammars using Binary Third-order Recurrent Neural Networks with Genetic Algorithm)

  • 정순호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.11-25
    • /
    • 2012
  • 이 논문은 이진 삼차 재귀 신경망(Binary Third-order Recurrent Neural Networks: BTRNN)에 유전자 알고리즘을 적용하여 문맥-자유 문법을 추론하는 방법을 제안한다. BTRNN은 각 입력심볼에 대응되는 재귀 신경망들의 다층적 구조이고 외부의 스택과 결합된다. BTRNN의 매개변수들은 모두 이진수로 표현되며 상태 전이와 동시에 스택의 한 동작이 실행된다. 염색체로 표현된 BTRNN들에 유전자 알고리즘을 적용하여 긍정과 부정의 입력 패턴들의 문맥-자유 문법을 추론하는 최적의 BTRNN를 얻는다. 이 방법은 기존의 신경망 이용방법보다 적은 학습량과 적은 학습회수로 작거나 같은 상태 수를 갖는 BTRNN을 추론한다. 또한 문법 표현의 염색체 이용방법보다 parsing과정에서 결정적인 상태전이와 스택동작이 실행되므로 입력 패턴에 대한 인식처리 시간복잡도가 우수하다. 문맥-자유 문법의 비단말 심볼의 개수 p, 단말 심볼의 개수 q, 그리고 길이가 k인 문자열이 입력이 될 때, BTRNN의 최대 상태수가 m이라고 하면, BTRNN의 인식처리 병렬처리 시간은 O(k)이고 순차처리 시간은 O(km)이다.

통합적 인지 모형의 가능성 (Toward a Possibility of the Unified Model of Cognition)

  • 이영의
    • 과학기술학연구
    • /
    • 제1권2호
    • /
    • pp.399-422
    • /
    • 2001
  • 인지과학에서 최근 논의되고 있는 인지 이론들은 인지에 대한 적절한 모형을 제공하지 못하고 있다. 전통적인 인공지능 이론은 추리나 문제 해결과 같은 과제에는 적절한 것처럼 보이지만 문자와 음성 인식과 같은 패턴 인식 분야에서는 여전히 비효율적이다. 연결주의는 전통적인 인공지능 이론과는 정반대의 양상을 보이고 있다. 연결주의 체계는 패턴 인식에는 강하지만 추리에는 약하다. 한편 최근에 제시된 상황화 된 행동 이론은 전통적인 인공지능과 연결주의에서 기본적으로 전제되고 있는 표상의 개념을 부정하고 실제 세계에서 직접 유래되는 지각에 바탕을 둔 모형을 제시하지만 인간의 인지를 효과적으로 설명하고 있지 못하다. 인지 모형들이 갖고 있는 이러한 한계점들을 강조하여 나는 이 글에서 인공지능, 연결주의, 상황화된 행동 이론을 각각 좌뇌 모형, 우뇌 모형, 로봇 모형이라고 부르고 그러한 한계 상황을 벗어날 수 있는 방법으로서 모형들간의 양립가능성을 이용한 통합적 인지 모형의 구축을 모색한다.

  • PDF

기후변화 시나리오 자료의 통계적 상세화를 위한 결측자료 보정 기법 개발 (Development of gap filling technique for statistical downscaling of cimate change scenario data)

  • 조재필;김광형;박지훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.16-16
    • /
    • 2019
  • 기후변화 시나리오 및 계절예측 자료를 포함한 기후정보를 수자원 분야에 활용하기 위해서는 기후정보의 시 공간적인 상세화(donwscaling)을 필요로 한다. 상세화의 경우 역학적 상세화와 통계학적 상세화로 구분될 수 있으며, 통계학적 상세화를 위해서는 대상 지역의 기후특성을 대표할 수 있는 장기 관측 자료의 확보가 중요하다. 국내의 경우에는 자동기상관측장비(Automatic Weather System, AWS)와 종관기상관측장비(Automatic Synoptic Observation System, ASOS)로 부터 수집된 기상관측자료를 사용할 수 있으나 기후변화 시나리오의 통계적 상세화를 위해서는 30년 이상의 자료 기간을 포함하는 ASOS 자료가 적합하다. 하지만 개발도상국과 같이 기상관측기반이 열악한 지역에서는 잦은 결측 등으로 인하여 품질이 좋은 관측자료의 획득이 어려운 상황이다. 따라서 본 연구에서는 측이 포함된 장기 기상관측 자료로부터 대상 지역의 기후특성을 재현할 수 있도록 기본적인 QC(Quality Control)을 거쳐 결측 자료를 보완할 수 있는 기법 및 R 기반패키지를 개발하여 적용성을 평가하였다. 개발된 기법의 적용성 평가를 위해서 기상청에서 QC를 통해 제공하고 있는 60개 ASOS 지점의 관측자료 중 강수량과 기온 변수를 사용하였다. 최대 50%까지의 현실적인 결측 패턴을 임의로 생성하기 위해 실제 개발도상국 관측자료의 일단위 결측 패턴을 이용하였다. 자료의 QC는 관측일 누락/중복 및 문자형 관측값 등 기본적인 오류 검사, 기온의 경우 물리적 허용 범위에 대한 검사, 최고기온과 최저기온의 비교 및 계측기 오작동에 의한 동일한 값의 반복 등을 포함한 내적 일치성 검사를 우선적으로 수행한다. 이후 결측값에 대해서 인근 기상관측소와의 상관성 분석 결과를 기반으로 결측값을 채우고, 최종적으로는 다양한 위성자료 및 재분석 자료 중에서 일단위 기후특성의 재현성 평가를 통해 선정된 격자형 자료와의 상관성 분석 결과를 기반으로 결측값을 보정하였다. 기온의 경우는 결측률이 높더라도 월평균 기후특성에 큰 영향을 미치지 않았지만 강수의 경우에는 5% 이상의 결측이 발생하는 경우 월평균 강수량에 영향을 미쳐 지역의 강수량을 과소 추정하는 결과를 보였다. 개발된 QC 기법을 강수 자료에 적용한 결과 월평균 기후특성을 잘 복원하는 결과를 보였지만, 일단위 강우 사상의 재현에 있어서는 미흡한 결과를 보였다.

  • PDF

WhiteList 기반의 악성코드 행위분석을 통한 악성코드 은닉 웹사이트 탐지 방안 연구 (Research on Malicious code hidden website detection method through WhiteList-based Malicious code Behavior Analysis)

  • 하정우;김휘강;임종인
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.61-75
    • /
    • 2011
  • 최근 DDoS공격용 좀비, 기업정보 및 개인정보 절취 등 각종 사이버 테러 및 금전적 이윤 획득의 목적으로 웹사이트를 해킹, 악성코드를 은닉함으로써 웹사이트 접속PC를 악성코드에 감염시키는 공격이 지속적으로 증가하고 있으며 은닉기술 및 회피기술 또한 지능화 전문화되고 있는 실정이다. 악성코드가 은닉된 웹사이트를 탐지하기 위한 현존기술은 BlackList 기반 패턴매칭 방식으로 공격자가 악성코드의 문자열 변경 또는 악성코드를 변경할 경우 탐지가 불가능하여 많은 접속자가 악성코드 감염에 노출될 수 밖에 없는 한계점이 존재한다. 본 논문에서는 기존 패턴매칭 방식의 한계점을 극복하기 위한 방안으로 WhiteList 기반의 악성코드 프로세스 행위분석 탐지기술을 제시하였다. 제안방식의 실험 결과 현존기술인 악성코드 스트링을 비교하는 패턴매칭의 MC-Finder는 0.8%, 패턴매칭과 행위분석을 동시에 적용하고 있는 구글은 4.9%, McAfee는 1.5%임에 비해 WhiteList 기반의 악성코드 프로세스 행위분석 기술은 10.8%의 탐지율을 보였으며, 이로써 제안방식이 악성코드 설치를 위해 악용되는 웹 사이트 탐지에 더욱 효과적이라는 것을 증명할 수 있었다.