• Title/Summary/Keyword: 문자영역추출

Search Result 288, Processing Time 0.027 seconds

A License Plate Extraction and Recognition Using Intensity Variation and Circular Pattern Vector (명암도 변화값과 원형 패턴 벡터를 이용한 차량번호판 추출 및 인식)

  • 김규영;김종민;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.241-244
    • /
    • 2000
  • 본 논문에서는 차량 영상의 수평 및 수직 명암 값 변화 정보를 이용하여 번호판 영역을 추출하고 원형 패턴 벡터를 이용하여 번호판 내용을 인식하는 알고리즘에 관해 기술하였다. 제안된 알고리즘에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 다른 영역보다 밀집도가 높다는 특성을 이용하여 수평 및 수직 명암도 변화값을 구하여 차량영상에서 번호판 영역을 추출하며 상당히 어둡거나 밝게 입력된 영상에도 동일한 인식 성능을 얻기 위하여 밝기 보정을 수행한다. 또한, 입력 문자의 크기, 이동 및 회전에 무관한 특성을 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 계산 속도가 훨씬 빠르며, 차량 번호판의 크기에 관계없이, 또한 잡음에 크게 영향을 받지 않으면서 번호판 추출이 정확하여 실시간 처리의 가능성을 제시하였을 뿐만 아니라 번호판 영역이 불투명하거나 불규칙한 조명 상태에서도 검출이 가능하였다.

  • PDF

USB Camera-Based Korean Manual Alphabet Recognition System Using Center of Gravity of Hand Region and Fuzzy Logic (손 영역의 무게 중심과 퍼지 논리를 이용한 USB 카메라 기반의 지문자 인식 시스템)

  • O, Yeong-Jun;Park, Gwang-Hyeon;Byeon, Jeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.300-303
    • /
    • 2007
  • 지문자는 청각장애인이 사용하는 수화로 표현하지 못하는 한글 문자를 알파벳으로 표시하기위한 손 제스처이다. 본 논문에서는 추출된 손 영역의 무게 중심과 퍼지 논리를 이용하여 지문자를 인식하는 알고리즘을 제안하고, 한글 문자를 표현하는 시스템을 개발한다. USB 카메라로부터 얻어진 영상에서 히스토그램을 이용하여 손의 피부색 영역을 추출하고, 영상 마스크를 이용하여 피부색이 아닌 배경 영역을 제거한다. 문턱 값을 사용하여 얻어진 이진화된 영상에서 손의 영역을 검출하고, 무게 중심을 이용하여 손 중심과 손가락 끝의 거리를 측정한다. 얻어진 거리 정보에 퍼지 기법을 적용하여 손가락의 굽힘 정도를 판단하고, 손 모양 데이터베이스에서 손가락 굽힘 정도와 가장 근사한 한글 문자를 선택한다.

  • PDF

A Study of plate Number Extraction and Segmentation using domain Knowledge (사전 정보를 이용한 자동차 번호판의 문자 위치 추출과 세그멘테이션에 관한 연구)

  • 김병훈;고미애;김영모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.259-261
    • /
    • 2003
  • 차량 번호판 인식 시스템의 번호판 인식과정은 영상획득 및 번호판 영역 추출, 개별문자 추출, 문자 인식의 3가지 핵심부분으로 구성된다. 이 중에서도 번호판 추출의 정확성은 시스템 전체의 결과에 영향을 줄 수 있는 부분이며 다양한 주변 환경에도 정확한 추출과 빠른 수행 시간을 요구한다. 본 논문에서는 검출 시간의 단축을 위하여 명암값의 차이와 사전정보를 이용하여 먼저 인식대상의 주목표인 등록번호의 위치를 추출 및 검증하고 등록번호에 대한 지역명의 상대적인 위치 정보를 이용하여 문자의 대략적인 위치를 선정, 각 요소들의 외곽 근접 선들의 투영(protection)과 이동을 통하여 번호판의 모든 문자 요소의 위치를 추출한다.

  • PDF

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • ;Lee, Jae-Eon;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF

Vehicle Plate Recognition Using Fuzzy-ARTMAP Neural Network (Fuzzy ARTMAP 신경망을 이용한 차량 번호판 인식에 관한 연구)

  • 김동호;강은택;김현주;이정식;최연성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.625-628
    • /
    • 2001
  • In this paper, it is shown that the car number plate are recognized more efficiently by using Fuzzy-ARTM AP. We use the location information of characters in the car number plate area and the color intensity difference between the character region and the background region int the tar number plate area. For segmented plate region, the car plate region is extracted by deciding the X-axis region composed by horizontal histogram and the Y-axis region composed by the variance histogram of vertical histogram. Our method then directly recognizes the extracted character region by using Fuzzy-ARTMAP neural network.

  • PDF

Character Recognition of the Receiver's Address, Name and Postal Code in Postal Reception Process (우편물의 접수과정에서 수취인의 주소, 성명 및 우편번호 인식)

  • 김성원;김형원;양윤모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.335-337
    • /
    • 2000
  • 본 연구에서는 문자 인식의 응용으로서 인쇄된 우편봉투의 주소를 인식한다. 스캐너로 입력된 우편봉투 영상으로부터 주소영역과 우편번호 영역을 분리한다. 분리된 각각의 영역에서 문자를 추출하고, 전처리로써 정규화, 특징추출 단계를 거쳐 우편번호와 주소를 각각 인식하였다. 이때, 우편번호 인식에 의하여 알 수 있는 주소와 실제로 인식한 주소의 신뢰도를 계산하여, 주소 인식 결과를 보정하는 과정을 거쳐 우편봉투의 인식을 실행하였다.

  • PDF

Vehicle License Plate Recognition Using Neural Networks and Android Devices (안드로이드 기기와 신경망을 이용한 차량 번호판 인식)

  • Han, Jong-Woo;Kim, Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.41-44
    • /
    • 2015
  • 본 논문에서는 안드로이드 기기를 활용하여 차량의 번호판을 인식하는 시스템을 제안한다. 이 시스템은 안드로이드 기기로 촬영한 차량의 이미지를 이용하여 번호판을 인식한다. 촬영한 이미지에서 번호판 영역을 추출한 후 번호판 영역 내에서 각각의 문자를 개별 추출한다. 추출된 각각의 문자에 대하여 세선화를 수행하고 세선화 후 얻은 이미지를 신경망의 입력으로 이용하여 최종적으로 개별의 문자를 인식하고 결과를 안드로이드 기기에 출력한다. 안드로이드 기기를 이용하여 바로 번호판을 인식할 수 있기 때문에 시, 공간에 대한 제약이 없으며 신경망을 사용하기 때문에 기존의 문자 인식 방법보다 우수한 인식률을 보인다.

  • PDF

A Study on the Automatic Recognition of a Car License Plate Using The color Information and N4M Feature Matching (칼라 정보와 N4M 특징 매칭을 이용한 차량 번호판 자동 인식에 관한 연구)

  • 이종은;이윤형;김재석;정기봉;오무송
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.151-154
    • /
    • 2000
  • 차량 번호판 영상을 안정적으로 추출하여 인식하는 방법에는 여러 가지 땅법들이 제시되어 왔다. 기존의 연구들은 번호판 영역 추출에는 높은 성공률을 보이고 있으나 상대적으로 문자 인식의 성공률이 그에 미치지 못해서 전체적인 인식 성공률에 저하를 가져오는 경우가 대부분 이었다. 따라서 본 연구에서는 칼라 정보를 이용하여 입력 영상의 밝기 보정과 번호판 영역을 추출하고 N4M (Normalized 4 - Mash)을 적용하여 문자인식 처리 시간을 단축시키고 인식글을 향상시킬 수 있었다.

  • PDF