• Title/Summary/Keyword: 문자영상

Search Result 796, Processing Time 0.026 seconds

Coupon recognition system Using Mobile SMS (휴대폰 문자메세지를 이용한 쿠폰 인식 시스템)

  • Kang, Sin-Kuk;Kang, Youl-Been
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.733-736
    • /
    • 2009
  • In this paper, we proposed the coupon recognition system using vision techniques. In the proposed system coupon information represented by the ID in the database. We use the camera to acquire images which contains coupon information. By using the ID we get information from the database. The performance of proposed system is verified through many mobile phones.

  • PDF

A Study on License Number Plate Extraction in a Car Image and Recognition (자동차 영상에서의 번호판 추출과 문자 인식에 관한 연구)

  • Nam, Kee-Hwan;Bae, Cheol-Soo;Na, Sang-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.713-716
    • /
    • 2002
  • 자동차의 번호판은 각각의 차량을 추분 할 수 있는 것으로, 번호판의 문자를 인식함으로써 전국에 등록되어 있는 모든 차량 중에 1 대를 폭정 지을 수 있다. 그러나 기존의 연구방법 대부분은 번호판 문자 중에서 큰 숫자 4개만을 인식하는 것으로 전국적인 규모에서 완전한 차량인식이 불충분하였다. 따라서 본 논문에서는 차량의 정면에서 촬영한 영상에서 번호판을 추출하고, 그 안에 표기된 모든 문자를 인식하는 방법을 제안한다. 본 연구에서 사용된 방법은 허프변환과 번호판의 형상특징을 이용하여 번호판영역을 추출하고, 추출된 번호판에서 문자의 위치적 특징을 사용하여 각 문자를 추분하고 인식하였다. 160장의 샘플사진으로 실험해 본 결과 번호판 영역을 추출하고, 문자인식을 모두 성공한 종합성공률은 87.5%의 결과를 나타내었다.

  • PDF

Multi-font/multi-size Hangul Character Recognition with Hierarchical Neural Networks (계층적 신경망을 이용한 다중크기의 다중활자체 한글문자인식)

  • Gwon, Jae-Uk;Jo, Seong-Bae;Kim, Jin-Hyeong
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.183-190
    • /
    • 1990
  • 본 논문에서는 인쇄체 한글문자를 실용적으로 인식하기 위하여 고안된 계층적 신경망을 소개하고, 이를 다중활자체의 한글문자를 인식하는 문제에 적용하였다. 이 신경망은 입력된 문자영상을 6가지의 유형으로 분류한 후, 해당 유형을 처리하는 신경망에서 실제 문자를 인식하도록 구성되었다. 또한 각 신경망을 모든 입력영상의 모든 출력노드에 대해 고르게 학습시키기 위하여 Backpropagation 알고리즘을 개선한 Descending Epsilon 알고리즘을 도입하였다. 그 결과 사용빈도수가 높은 한글 520자에 대해 94.4 - 98.4%의 인식률을 얻음으로써 본 논문에서 제안한 시스템이 다양한 활자체로 이루어진 실제 문서인식시스템의 문자인식부에 효과적으로 사용될 수 있음을 제시하였다.

  • PDF

An Efficient Text Location using Mean Shift Algorithm (Mean Shift 알고리즘을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.123-126
    • /
    • 2001
  • 영상내의 문자 정보는 색인에 필요한 유용한 정보를 제공하므로, 이를 이용한 멀티미디어 데이터의 인덱싱기법이 최근 많이 연구되고 있다. 본 논문은 mean shift 알고리즘을 이용한 텍스춰 기반의 문자 영역 추출 방법을 제안한다. 다양한 크기와 모양의 문자에 적응성을 가지는 필터를 만들기 위해 신경망을 이용한다. 문자 영역의 위치와 크기는 문자 확률 영상상에서 mean shift 알고리즘을 이용하여, 국소 탐색만으로 별도의 후처리 과정 없이 기존의 문자 추출 방법보다 우수한 성능을 보인다.

  • PDF

Character Recognition System using Fast Preprocessing Method (전처리의 고속화에 기반한 문자 인식 시스템)

  • 공용해
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.3
    • /
    • pp.297-307
    • /
    • 1999
  • A character recognition system, where a large amount of character images arrive continuously in real time, must preprocess character images very quickly. Moreover, information loss due to image trans-formations such as geometric normalization and thinning needs to be minimized especially when character images are small and noisy. Therefore, we suggest a prompt and effective feature extraction method without transforming original images. For this, boundary pixels are defined in terms of the degree in classification, and those boundary pixels are considered selectively in extracting features. The proposed method is tested by a handwritten character recognition and a car plate number recognition. The experiments show that the proposed method is effective in recognition compared to conventional methods. And an overall reduction of execution time is achieved by completing all the required processing by a single image scan.

  • PDF

Text Region Detection Using Regional Connected Component and Edge Structure Component Feature From Natural Scene Images (지역적 연결요소 및 에지 구조 성분 특징을 이용한 자연이미지로부터 문자영역 검출)

  • Bak, Jong-Cheon;Hwang, Dong-Guk;Gwon, Gyo-Hyeon;Jeon, Byeong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.40-43
    • /
    • 2009
  • 최근 모바일 영상기반 응용 분야에 관한 연구가 활발히 진행되고 있으며 모바일기기로 촬영된 영상에서 문자정보를 추출하고자 하는 많은 연구도 진행되고 있다. 자연이미지로부터 문자정보를 추출을 위한 전단계로 문자영역 검출이 필수적이다. 본 연구는 문자영역의 지역적 에지 및 연결요소 특징을 고려하여 조명 및 복잡한 배경에서도 문자영역을 검출하는 방법을 제안한다. 에지 검출은 캐니-에지 검출기로 추출하고, RGB 컬러분포 패턴을 분석하여 컬러 양자화를 함으로서 연결성분을 추출한다. 각각 추출된 에지 및 연결성분으로부터 문자후보 영역을 검출하고, 각각의 결과를 결합하여 최종적인 문자 후보 영역을 검출하고, 문자 후보 영역에 대한 검증을 수행함으로서 최종적인 문자영역을 검출한다. 제안한 방법은 다양한 환경에서 얻어진 자연이미지를 대상으로 실험한 결과, 에지 및 연결성분의 두 가지 특징을 결합함으로서 자연이미지에 존재하는 다양한 형태의 문자영역을 효과적으로 검출하였다.

  • PDF

Improved Binarization and Removal of Noises for Effective Extraction of Characters in Color Images (컬러 영상에서 효율적 문자 추출을 위한 개선된 2치화 및 잡음 저거)

  • 이은주;정장호
    • Journal of Information Technology Application
    • /
    • v.3 no.2
    • /
    • pp.133-147
    • /
    • 2001
  • This paper proposed a new algorithm for binarization and removal of noises in color images with characters and pictures. Binarization was performed by threshold which had computed with color-relationship relative to the number of pixel in background and character candidates and pre-threshold for dividing of background and character candidates in input images. The pre-threshold has been computed by the histogram of R, G, B In respect of the images, while background and character candidates of input images are divided by the above pre-threshold. As it is possible that threshold can be dynamically decided by the quantity of the noises, and the character images are maintained and the noises are removed to the maximum. And, in this study, we made the noise pattern table as a result of analysis in noise pattern included in the various color images aiming at removal of the noises from the Images. Noises included in the images can figure out Distribution by way of the noise pattern table and pattern matching itself. And then this Distribution classified difficulty of noises included in the images into the three categories. As removal of noises in the images is processed through different procedure according to the its classified difficulties, time required for process was reduced and efficiency of noise removal was improved. As a result of recognition experiments in respect of extracted characters in color images by way of the proposed algorithm, we conformed that the proposed algorithm is useful in a sense that it obtained the recognition rate in general documents without colors and pictures to the same level.

  • PDF

2차원 마르코프 랜덤 필드를 이용한 팩시밀리 영상 복원

  • 윤명영;김주성;서민자
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.03a
    • /
    • pp.141-161
    • /
    • 1997
  • 팩시밀리로부터 수신된 영상은 글자를 두껍게 하는 돌출잡영(salient noise), 문자주변에 점이 추가되는 고춧가루 잡영(pepper noise), 선의절단을 일으키는 백색잡영(white noise)으로 인하여 가독성이 떨어진다. 수신된 팩시밀리 영상을 원래의 영상으로 복원하기 위하여 최근에 Handley 와 Dougherty가 처음으로 형태학적 복원 방법을 제안하였다. 형태학적 복원 방법은 돌출잡영에 대해서 효과적이었지만, 확률적으로 발생하는 백색잡영과 고춧가루잡영에 대해서는 팩시밀리 영상을 결정적 수열(deterministic sequence)로다루었기 때문에 효과적이지 못했다. 본 논문에서는 주사과정, 고딩과정, 그리고 통신과정에서 생성되는 돌출, 고춧가루, 백색잡영에 의해 훼손된 팩시밀리 영상을 칼만여과를 이용하여 복원하는 새로운 방법을 제안하였다. 제안된 방법은 모델링과 복원 두 단계로 구축된다. 첫째, 이웃 화소들과의 종속관계를 갖는 팩시밀리 영상을 마르코프 랜덤 필드를 바탕으로 팩시밀리 시스템 모델을 제안하였다. 둘째, 제안된 팩시밀리 시스템 모델을 칼만 여과과정의 시스템 모델 및 관측모델로 재구성한 다음, 칼만 여과과정의 ill-conditioned 문제를 극복하기 위하여 양정치 (positive definite)공분산 행렬을 유도하여 새로운 복원방법을 제안하였다. 제안된 방법의 복원 능력을 검증하기 위하여 사무실에서 가장 많이 사용되는 한글을 사용하여 알파벳 대소문자, 숫자, 특수문자로 구성된 문서를 만들어 실험하였다. 그 결과, 제안된 방법이 형태학적인 복원 방법보다 성능이 우수함을 밝혔다.

Malaysian Vehicle License Plate Recognition in Low Illumination Images (저 조도 영상에서의 말레이시아 차량 번호판 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.19-26
    • /
    • 2013
  • In the Malaysian license plates, alphabets and numerals which are made by plastic, are adhered to a frame as embossing style and occasionally characters in horizontal, vertical directions are aligned with narrow space. So the extraction of character stroke information can be hard in the vehicle images of low illumination intensity. In this paper, Malaysian license plate recognition algorithm for low illumination intensity image is proposed. DoG filtering based character stroke generation method is introduced to derive exact connected components of strokes in the vehicle image of low illumination intensity. After localization of plate by connected component analysis, characters are segmented and recognized. Algorithm is experimented for the 6,046 vehicle images captured in Kuala Lumpur by IR camera without using any special light during day and night. The experimental results show that recognition accuracy of plates is 96.1%.

An Effective Method of Product Number Detection from Thick Plates (효과적인 후판의 제품번호 검출 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • In this paper, a new algorithm is proposed for detecting the product number of each thick plate and extracting each character of the product number from a image which contains several thick plates. In general, a image of thick plates contains several steal plates. To obtain the product number from the image, we first need to separate each plate. To do so, we use the line edges of thick plates and a clustering algorithm. After separating each plate, background parts are eliminated from the image of each plate. Background parts of an individual thick plate image consist of the dark part of steel and the white part of paint which is used for printing the product number. We propose a two-tiered method where dark background parts are first eliminated and then white parts are eliminated. Finally, each character is extracted from the product number image using the characteristics of product number. The results of the experiments on the various steal plates images emphasize that the proposed algorithm detects each thick plate and extracts the product number from a image effectively.