• Title/Summary/Keyword: 문서 쌍 유사도

Search Result 20, Processing Time 0.048 seconds

Sentence Interaction-based Document Similarity Models for News Clustering (뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들)

  • Choi, Seonghwan;Son, Donghyun;Lee, Hochang
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF

Experiment of Searching Candidate Text Pair for Searching Similar Texts among Massive Document Repository (대용량 문서 집합에서 유사문서 탐색을 위한 후보 문서 쌍 검색 실험)

  • Park, Sun-Young;Chung, Woo-Keun;Cho, Hwan-Gue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.275-278
    • /
    • 2010
  • 문서 표절과 관련된 이슈가 급증함에 따라 유사 문서 탐색과 관련한 연구가 활발히 진행되고 있다. 특히 인터넷의 발달로 인해 일반 사용자가 수많은 전자 문서에 쉽게 접근할 수 있게 됨에 따라 대용량 문서 집합에 대한 탐색 속도와 정확성의 중요성도 커지고 있다. 대용량 문서 집합 내에서 빠른 시간 내에 유사 문서를 탐색하는 방법에는 전역 사전을 이용하여 후보 문서 쌍(유사할 가능성이 높은 문서의 쌍)를 추출한 후 찾아낸 후보 문서 쌍에만 정밀한 검사를 수행함으로써 검사 시간을 줄이는 방법이 존재한다. 이 때, 후보 문서를 찾아내기 위하여 전역 사전(Global DICtionary, GDIC)이라는 자료 구조를 이용하게 되는데, 이 전역 사전을 효과적으로 사용하면 후보 문서 쌍을 찾아내는 시간을 기존보다 더욱 줄일 수 있다. 본 논문에서는 전역 사전을 더욱 효과적으로 활용하여 후보 문서 쌍 검색 시간을 대폭 줄이는 방법에 대해 기술하며, 어느 정도의 성능 향상이 있는지 실험을 통해 측정하였다. 20,000건의 실험용 말뭉치 자료와 6263건의 실존하는 보고 문서에 대해 실험한 결과, GDIC 생성에서 2.5~4,6%, 후보 문서 쌍 탐색에서 1%~15.4% 정도의 성능이 향상된 것을 확인할 수 있었다. 추후 update query를 최소화하여 GDIC 생성시간을 추가로 줄이는 방법에 대해 연구할 계획이다.

  • PDF

Measurement of Document Similarity using Term/Term-pair Features and Neural Network (단어/단어쌍 특징과 신경망을 이용한 두 문서간 유사도 측정)

  • Kim Hye Sook;Park Sang Cheol;Kim Soo Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1660-1671
    • /
    • 2004
  • This paper proposes a method for measuring document similarity between two documents. One of the most significant ideas of the method is to estimate the degree of similarity between two documents based on the frequencies of terms and term-pair, existing in both the two documents. In contrast to conventional methods which takes only one feature into account, the proposed method considers several features at the same time and meatures the similarity using a neural network. To prove the superiority of our method, two experiments have been conducted. One is to verify whether the two input documents are from the same document or not. The other is a problem of information retrieval with a document as the query against a large number of documents. In both the two experiments, the proposed method shows higher accuracy than two conventional methods, Cosine similarity measurement and a term-pair method.

Performance Improvement on Similar Texts Searching System for Massive Document Repository (대용량 문서 집합에서 유사문서 탐색 시스템의 성능 개선)

  • Park, Sun-Young;Cho, Hwan-Gue
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.413-416
    • /
    • 2010
  • 최근 발생한 수많은 표절 논란으로 인해 많은 유사 문서 탐색 시스템이 개발되어 사용되고 있다. 많은 시스템 중 내용기반 유사문서 탐색 시스템인 DeVAC은 대용량 문서 1:1간의 비교에서 빠른 성능을 보여주지만 수천~수만 개의 문서 집합에 대해서는 적절한 성능을 보여주지 못한다. 이를 해결하기 위해 전역 사전(Global Dictionary)을 이용한 전처리 방법이 고안되어 적용되었다. 이 전처리 방법을 통해 비교해야 할 문서쌍이 줄어들고 전체 시스템의 성능을 향상시킬 수 있다는 것은 밝혀졌으나, 전처리를 위해 발생하는 추가 비용에 대한 계측이 이루어지지 않았을 뿐 아니라 문서 쌍이 얼마나 감소하는지 측정한 실험에서도 언어 처리용 실험적 데이터(말뭉치)에 대한 실험이 대부분을 차지하였기 때문에 실제 데이터에 대해 어떤 성능을 보일지 정확히 예측할 수 없었다. 본 논문에서는 전체 시스템에서 전처리를 위해 필요한 모든 추가 비용을 측정하고, 데이터를 1.5Gb, 6263개의 문서로 이루어진 실존하는 문서 집합으로 구성하여 성능 향상 정도를 측정함으로써 실제 데이터에 대한 전처리 신뢰도를 예측하였다. 실험 결과 전처리 후 찾아낸 유사한 문서 쌍을 전처리를 하지 않을 경우의 80~89.3% 정도로 유지하면서 검사 시간을 기존의 10.8%~15.4% 수준으로 대폭 감소시킬 수 있었다.

Learning Probabilistic Graph Models for Extracting Topic Words in a Collection of Text Documents (텍스트 문서의 주제어 추출을 위한 확률적 그래프 모델의 학습)

  • 신형주;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.265-267
    • /
    • 2000
  • 본 논문에서는 텍스트 문서의 주제어를 추출하고 문서를 주제별로 분류하기 위해 확률적 그래프 모델을 사용하는 방법을 제안하였다. 텍스트 문서 데이터를 문서와 단어의 쌍으로(dyadic)표현하여 확률적 생성 모델을 학습하였다. 확률적 그래프 모델의 학습에는 정의된 likelihood를 최대화하기 위한 EM(Expected Maximization)알고리즘을 사용하였다. TREC-8 AdHoc 텍스트 에이터에 대하여 학습된 확률 그래프 모델의 성능을 실험적으로 평가하였다. 이로부터 찾아 낸 문서에 대한 주제어가 사람이 제시한 주제어와 유사한 지와, 사람이 각 주제에 대해 분류한 문서가 이 확률모델로부터의 분류와 유사한 지를 실험적으로 검토하였다.

  • PDF

An Algorithm for extracting English-Korean Transliteration pairs using Automatic I-K Transliteration (자동 음차표기를 이용한 영-한 음차표기 대역쌍의 자동 추출)

  • 오종훈;배선미;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.928-930
    • /
    • 2004
  • 지금까지 기계번역과 교차언어 정보검색 등과 같은 자연언어응용에서 사용되는 번역지식을 자동으로 구축하는 연구가 활발히 진행되어 왔다. 번역지식을 자동으로 구축하는 연구는 대역사전에 등재되어 있지 않은 미등록어에 대한 대역정보를 문서에서 자동으로 획득하는 것을 목표로 한다. 최근에는 이러한 미등록어 중 음차표기 번역지식에 대한 연구가 활발히 진행되고 있다. 음차표기는 주로 영어 단어를 발음에 기반하여 비영어권의 언어로 표기하는 것을 의미한다. 음차표기된 단어들은 새로운 개념을 나타내는 신조어가 많기 때문에 사전에 등재되어 있지 않온 경우가 많다. 따라서 효과적인 번역지식 구축을 위해서는 이러한 음차표기 번역지식을 자동으로 획득하는 것은 매우 중요하다. 본 논문에서는 영-한 음차표기 대역쌍을 문서에서 자동으로 추출하는 알고리즘을 제안한다. 본 논문의 기법은 한국어 음차표기의 인식, 영-한 자동음차표기, 한국어 음차표기와 자동음차표기된 영어단어간의 음성적 유사도 비교를 통하여 음차표기 대역쌍을 추출한다. 본 논문의 기법은 약 93%의 정확률과 68%의 재현율을 나타내었다.

  • PDF

Various Paraphrase Generation Using Sentence Similarity (문장 유사도를 이용한 다양한 표현의 패러프레이즈 생성)

  • Park, Da-Sol;Chang, Du-Seong;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.576-581
    • /
    • 2021
  • 패러프레이즈란 어떤 문장을 같은 의미를 가지는 다른 단어들을 사용하여 표현한 것들을 의미한다. 이는 정보 검색, 다중 문서 요약, 질의응답 등 여러 자연어 처리 분야에서 중요한 역할을 한다. 특히, 양질의 패러프레이즈 코퍼스를 얻는 것은 많은 시간 및 비용이 소요된다. 이러한 문제점을 해소하기 위해 본 논문에서는 문장 유사도를 이용한 패러프레이즈 쌍을 구축하고, 또 구축한 패러프레이즈 쌍을 이용하여 기계 학습을 통해 새로운 패러프레이즈을 생성한다. 제안 방식으로 생성된 패러프레이즈 쌍은 기존의 구축되어 있는 코퍼스 내 나타나는 표현들로만 구성된 페러프레이즈 쌍이라는 단점이 존재한다. 이러한 단점을 해소하기 위해 기계 학습을 이용한 실험을 진행하여 새로운 표현에 대한 후보군을 추출하는 방법을 적용하여 새로운 표현이라고 볼 수 있는 후보군들을 추출하여 기존의 코퍼스 내 새로운 표현들이 생성된 것을 확인할 수 있었다.

  • PDF

An Efficient kNN Algorithm (효율적인 kNN 알고리즘)

  • Lee Jae Moon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.849-854
    • /
    • 2004
  • This paper proposes an algorithm to enhance the execution time of kNN in the document classification. The proposed algorithm is to enhance the execution time by minimizing the computing cost of the similarity between two documents by using the list of pairs, while the conventional kNN uses the iist of pairs. The 1ist of pairs can be obtained by applying the matrix transposition to the list of pairs at the training phase of the document classification. This paper analyzed the proposed algorithm in the time complexity and compared it with the conventional kNN. And it compared the proposed algorithm with the conventional kNN by using routers-21578 data experimentally. The experimental results show that the proposed algorithm outperforms kNN about $90{\%}$ in terms of the ex-ecution time.

Word Spotting Algorithms Using SIFT in Document Images (SIFT를 이용한 문서 영상에서의 단어 검색 알고리즘)

  • Lee, Duk-Ryong;Jeon, Hyo-Jong;Oh, Il-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.488-490
    • /
    • 2011
  • 본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.

Term Clustering based on Causal Context Information (인과관계 문맥정보를 사용한 용어 군집화 연구)

  • Chang, Du-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.25-31
    • /
    • 2004
  • 단서구문 및 어휘 쌍 확률 등을 이용하면 일정한 영역의 문서에서 사용된 용어의 원인이 되거나 결과를 나타나는 관련어들을 찾을 수 있다. 본 논문에서는 이러한 각 용어의 선행 원인과 후행 결과를 인과관계 정보라고 정의한다. 인과관계 정보가 유사한 용어들은 서로 유사한 개념에 속한다고 가정한다면, 용어의 직/간접적 인과관계로서 용어 온톨로지에서 그 용어가 속할 집합을 결정하는데 도움을 줄 수 있다. 본 논문에서는 각 용어의 인과관계가 용어 군집화를 위한 유용한 문맥 정보의 하나라는 것을 실험을 통해 증명하였다. 속성으로 사용된 인과관계는 대용량의 코퍼스로부터 비지도식 학습방법을 통해 자동 습득하였으며, 그 정확도는 74.84%를 보였다. 1659개 용어에 대한 군집화 실험 결과 70.02%의 정확도를 보였으며, 어휘 유사도만을 사용한 경우에 비해 32.9%의 적용도 향상을 보였다.

  • PDF