Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2004.10d
- /
- Pages.25-31
- /
- 2004
- /
- 2005-3053(pISSN)
Term Clustering based on Causal Context Information
인과관계 문맥정보를 사용한 용어 군집화 연구
- Chang, Du-Seong (Spoken Language Research Team KT, Division of Computer Science KAIST) ;
- Choi, Key-Sun (Division of Computer Science KAIST, KORTERM, BOLA)
- Published : 2004.10.08
Abstract
단서구문 및 어휘 쌍 확률 등을 이용하면 일정한 영역의 문서에서 사용된 용어의 원인이 되거나 결과를 나타나는 관련어들을 찾을 수 있다. 본 논문에서는 이러한 각 용어의 선행 원인과 후행 결과를 인과관계 정보라고 정의한다. 인과관계 정보가 유사한 용어들은 서로 유사한 개념에 속한다고 가정한다면, 용어의 직/간접적 인과관계로서 용어 온톨로지에서 그 용어가 속할 집합을 결정하는데 도움을 줄 수 있다. 본 논문에서는 각 용어의 인과관계가 용어 군집화를 위한 유용한 문맥 정보의 하나라는 것을 실험을 통해 증명하였다. 속성으로 사용된 인과관계는 대용량의 코퍼스로부터 비지도식 학습방법을 통해 자동 습득하였으며, 그 정확도는 74.84%를 보였다. 1659개 용어에 대한 군집화 실험 결과 70.02%의 정확도를 보였으며, 어휘 유사도만을 사용한 경우에 비해 32.9%의 적용도 향상을 보였다.
Keywords