• 제목/요약/키워드: 문서감정

검색결과 65건 처리시간 0.02초

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발 (A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine)

  • 황재원;전태균;고영중
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법 (A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법 (A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템 (A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권6호
    • /
    • pp.491-497
    • /
    • 2009
  • 본 논문은 한국어 문서감정 분류에서 각 문장의 감정 정도의 차이를 고려하여 자질의 가중치를 계산하는 방법을 제안한다. 감정자질은 어휘 자원으로서 감정을 가지는 단어들의 집합이며, 학습데이터를 이용하여 이 감정자질의 카이제곱 통계량 값(${\chi}^2$ statistic)을 얻을 수 있다. 이렇게 얻어진 카이제곱 통계량 값으로 문서에서 출현한 각 문장의 감정강도를 수치화 할 수 있다. 각 문장의 감정강도는 문서에서 가장 강한 감정을 가진 문장에 근한 비율로 계산되며, 이 값을 TF-IDF 가중치 기법에 적용하여 최종적인 자질의 가중치를 결정하게 된다. 그리고 일반적으로 문서 분류에서 뛰어난 성능을 보여주는 지지벡터기계(Support Vector Machine)를 사용하여 기계학습을 수행한 후 성능을 평가한다. 성능평가에서 제안된 기법은 문장감정의 강도를 고려하지 않은 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 2.0%의 성능향상을 얻었다.

감정요소를 사용한 정보검색에 관한 연구 (A Study of using Emotional Features for Information Retrieval Systems)

  • 김명관;박영택
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.579-586
    • /
    • 2003
  • 감정요소를 사용한 정보검색시스템은 감정에 기반한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.

감정 기반 블로그 문서 분류를 위한 부정어 처리 및 단어 가중치 적용 기법의 효과에 대한 연구 (A Study on Negation Handling and Term Weighting Schemes and Their Effects on Mood-based Text Classification)

  • 정유철;최윤정;맹성현
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.477-497
    • /
    • 2008
  • 일상생활에서 많이 쓰이는 블로그 문서를 분석하는 것은 다양한 웹 응용서비스를 연결할 수 있는 중요한 단초를 제시하므로, 블로그 문서에 담긴 감정을 파악하는 것을 매우 유용한 일이다. 본 논문에서는 블로그 문서에 존재하는 감정을 보다 정확하게 분류하기 위해 부정어 처리와 새로운 단어 가중치의 적용이 성능에 미치는 영향에 대해 탐구한다. 특히, 감정단서(clue)가 내재된 정규화된 부정어 n-gram을 통해 부정어 처리를 고도화하고 말뭉치기반 단어 가중치 계산법(Corpus-specific Term Weighting, CSTW)을 통해 감정 분류 성능향상을 살펴보기로 한다. 검증을 위해 블로그 문서들로 정답 말뭉치를 구축하고 감정 흐름 분석(Enhanced Mood Flow Analysis, EMFA)과 지지벡터기계기반 감정 분류(Support Vector Machine based Mood Classification, SVMMC)의 두 가지 분류기법에 대해 실험을 하였다. 정규화된 부정어 n-gram의 적용은 EMFA에서 점진적인 감정 분류 성능 향상을 보여주었으며, CSTW의 적용은 TF*IDF나 TF에 비해 보다 높은 감정 분류 성능을 나타내었다.

  • PDF

트윗 감정 분류를 위한 비어휘자질의 사용 (Using Non-Lexical Features for Tweet Sentiment Classificaion)

  • 홍초희;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.160-162
    • /
    • 2012
  • 문서를 대상으로 한 다양한 감정 분류 연구가 진행되어 왔으며, 최근에는 트윗 감정 분류에 그대로 적용되고 있다. 그러나 트윗은 일반 문서와 다르게 몇 가지의 독특한 특징을 갖고 있어 좋은 성능을 보이지 못하고 있다. 본 논문에서는 기계학습을 기반으로 트윗의 특징과 트윗 사용자 정보 자질을 사용한 실험으로 트윗 감정 분류 성능의 영향을 확인하였다. 실험 결과 트윗에 포함된 이모티콘 감정 극성과, 사용자 성향 극성 자질은 트윗 감정 분류 모델의 성능 향상에 기여를 하는 것을 알 수 있었다.

  • PDF

필적 및 서명에 대한 Off-line 자동분석시스템 (The Off-line Verification System of Signature of Handwrite)

  • 김세훈;하정요;김계영;최형일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.189-193
    • /
    • 2007
  • 필적 감정은 개인의 고유한 필적 개성을 이용하여 임의의 두 필기 문장 또는 텍스트가 동일인에 의해 작성되었는지를 판별하는 기술로 유서대필 및 보안수사, 서명의 검증, 범죄 수사 등에 활용되어지고 있다. 이러한 작업은 감정 전문가의 판단기준에 의해 필적의 유사성을 판별하기 때문에 객관성 결여 및 과도한 소요 시간, 과도한 처리비용의 문제를 내포하게 된다. 이러한 문제를 해결하여 판별의 객관성과 업무의 신속한 처리를 가능하게 하기 본 논문에서는 컴퓨터를 통한 패턴 분석을 적용하여 두 필적의 유사성을 판별하는 방법을 본 논문에서는 제안한다. 이를 위하여 본 논문은 학습단계와 자동분석단계로 나뉘며, 학습단계에서는 입력된 문서영상에서 필적의 영역을 추출한 후, 특징을 추출하고 DTW연산을 통하여 학습을 한다. 자동분석단계에서는 대조할 문서영상에서의 특징을 추출하고 입력된 문서영상과 대조할 문서영상간의 마할라노비스 거리(Mahalanobis Distance)를 구하여 서명 및 필적에 대한 유사도를 도출한다. 실험은 4명의 필적을 이용하여 비교하였으며, 우수한 결과를 보였다.

  • PDF

감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가 (A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification)

  • 황재원;고영중
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • 본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.

  • PDF