• Title/Summary/Keyword: 문법 품질 평가

Search Result 5, Processing Time 0.016 seconds

Grammatical Quality Estimation for Error Correction in Automatic Speech Recognition (문법성 품질 예측에 기반한 음성 인식 오류 교정)

  • Mintaek Seo;Seung-Hoon Na;Minsoo Na;Maengsik Choi;Chunghee Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.608-612
    • /
    • 2022
  • 딥러닝의 발전 이후, 다양한 분야에서는 딥러닝을 이용해 이전에 어려웠던 작업들을 해결하여 사용자에게 편의성을 제공하고 있다. 하지만 아직 딥러닝을 통해 이상적인 서비스를 제공하는 데는 어려움이 있다. 특히, 음성 인식 작업에서 음성 양식에서 이용 방안에 대하여 다양성을 제공해주는 음성을 텍스트로 전환하는 Speech-To-Text(STT)은 문장 결과가 이상치에 달하지 못해 오류가 나타나게 된다. 본 논문에서는 STT 결과 보정을 문법 교정으로 치환하여 종단에서 올바른 토큰들을 조합하여 성능 향상을 하기 위해 각 토큰 별 품질 평가를 진행하는 모델을 한국어에서 적용하고 성능의 향상을 확인한다.

  • PDF

A Study on Evaluating Summarization Performance using Generative Al Model (생성형 AI 모델을 활용한 요약 성능 평가 연구 )

  • Gyuri Choi;Seoyoon Park;Yejee Kang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.228-233
    • /
    • 2023
  • 인간의 수동 평가 시 시간과 비용의 소모, 주석자 간의 의견 불일치, 평가 결과의 품질 등 불가피한 한계가 발생한다. 본 논문에서는 맥락을 고려하고 긴 문장 입출력이 가능한 ChatGPT를 활용한 한국어 요약문 평가가 인간 평가를 대체하거나 보조하는 것이 가능한가에 대해 살펴보았다. 이를 위해 ChatGPT가 생성한 요약문에 정량적 평가와 정성적 평가를 진행하였으며 정량적 지표로 BERTScore, 정성적 지표로는 일관성, 관련성, 문법성, 유창성을 사용하였다. 평가 결과 ChatGPT4의 경우 인간 수동 평가를 보조할 수 있는 가능성이 있음을 확인하였다. ChatGPT가 영어 기반으로 학습된 모델임을 고려하여 오류 발견 성능을 검증하고자 한국어 오류 요약문으로 추가 평가를 진행하였다. 그 결과 ChatGPT3.5와 ChatGPT4의 오류 요약 평가 성능은 불안정하여 인간을 보조하기에는 아직 어려움이 있음을 확인하였다.

  • PDF

Building Sentiment-Annotated Datasets for Training a FbSA model based on the SSP methodology (반자동 언어데이터 증강 방식에 기반한 FbSA 모델 학습을 위한 감성주석 데이터셋 FeSAD 구축)

  • Yoon, Jeong-Woo;Hwang, Chang-Hoe;Choi, Su-Won;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.66-71
    • /
    • 2021
  • 본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.

  • PDF

A Case Study on the Accessibility of Online Learning Content in Korea (국내 원격 교육 콘텐츠의 접근성 분석 사례)

  • 신승식
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.92-101
    • /
    • 2003
  • The accessibility evaluation of ten web-based loaming content in Korea was performed with the following procedure : (1) A primitive metric of the compliance of those contents to the WCAG (Web Content Accessibility Guidelines) 1.0 was obtained using Bobby, a widely used accessibility checker. (2) SGML validation test was carried out. (3) The contents were rendered with various browsers including a text-mode browser. (4) They were manually checked as to whether they satisfy the accessibility criteria proposed by W3C. Most of the tested contents scored low marks in all the test categories partly because they were apparently developed with little attention paid to web standard conformance, browser compatibility, and device-independence. They also put heavy emphasis on audio-visual effects catering only to the best-equipped users and offering no alternate access route for those in restricted environment. As more information and learning materials are delivered through the Internet, these low accessible contents would lead to a deeper information divide. The accessibility needs to be regarded as an important factor in evaluating the quality of loaming content.

  • PDF

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.