Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2022.10a
- /
- Pages.608-612
- /
- 2022
- /
- 2005-3053(pISSN)
Grammatical Quality Estimation for Error Correction in Automatic Speech Recognition
문법성 품질 예측에 기반한 음성 인식 오류 교정
- Mintaek Seo (Jeonbuk National University) ;
- Seung-Hoon Na (Jeonbuk National University) ;
- Minsoo Na (NCSOFT Corp) ;
- Maengsik Choi (NCSOFT Corp) ;
- Chunghee Lee (NCSOFT Corp)
- Published : 2022.10.18
Abstract
딥러닝의 발전 이후, 다양한 분야에서는 딥러닝을 이용해 이전에 어려웠던 작업들을 해결하여 사용자에게 편의성을 제공하고 있다. 하지만 아직 딥러닝을 통해 이상적인 서비스를 제공하는 데는 어려움이 있다. 특히, 음성 인식 작업에서 음성 양식에서 이용 방안에 대하여 다양성을 제공해주는 음성을 텍스트로 전환하는 Speech-To-Text(STT)은 문장 결과가 이상치에 달하지 못해 오류가 나타나게 된다. 본 논문에서는 STT 결과 보정을 문법 교정으로 치환하여 종단에서 올바른 토큰들을 조합하여 성능 향상을 하기 위해 각 토큰 별 품질 평가를 진행하는 모델을 한국어에서 적용하고 성능의 향상을 확인한다.