• 제목/요약/키워드: 무인 잠수정

검색결과 57건 처리시간 0.033초

반 자율형 무인 잠수정(SAUV) 선상제어 시스템 설계 (Design of on-ship Control System for a Semi-Autonomous Underwater Vehicle)

  • 이지홍;이필엽;전봉환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2685-2688
    • /
    • 2003
  • A PC-based system for both monitoring and controlling SAUV is developed. The developed system is located on a ship and communicate with the SAUV through optical link through which the system sends motion command and receives video data, SSBL and Digital I/O data. The motion command includes velocity data and direction data. The overall system is developed with the intention of easy operation for operator and safe motion of SAUV. The easy operation is realized by GUI-based interface and the safe motion is realized by fault tolerant capability.

  • PDF

새로운 Convertible ROV의 설계 연구 (Study of Design for Convertible ROV)

  • 최형식;전지광;정상기;박한일;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.451-458
    • /
    • 2012
  • 수중의 작업 목적에 따라 ROV와 AUV의 두 가지 용도로 사용할 수 있는 새로운 구조의 변신 6자유도 수중로봇의 설계연구를 하였다. CROV의 ROV모드와 AUV모드에 대한 각각의 구조 설계연구를 수행하였으며 각각의 모드에 대한 제어시스템을 설계하고 AUV의 경우에는 추력에 따른 항해속도에 대한 해석을 수행하였다. ROV나 AUV의 정확한 위치 및 속도를 추정할 수 있도록 다양한 센서신호를 퓨전하여 처리하는 센서퓨전보드를 제작하고 확장 칼만필터를 포함하는 전체 제어시스템을 설계하고 제작하였다.

자율무인잠수정의 자율기술 수준 및 발전 동향

  • 서주노;최중락
    • 전자공학회지
    • /
    • 제38권7호
    • /
    • pp.20-29
    • /
    • 2011
  • 무인잠수정(Unmanned Underwater Vehicle, UUV)은 하드웨어 구성과 관련하여 ROV (Remotely Operated Vehicle), SAUV (Semi-Autonomous Underwater Vehicle), AUV (Autonomous Underwater Vehicle) 등으로 구분할 수 있으며, 그 중에서 자율무인잠수정(AUV)은 주어진 임무의 난이도, 작업 환경의 정보, 그리고 운용자의 간섭 정도에 따라 다양한 수준으로 자율 정도를 분류한다. 무인잠수정은 미국을 중심으로 1952년부터 개발되기 시작하였으며 최초는 전적으로 운용자에 의해서 직접 운용되는 ROV가 주를 이루었다. 자율무인잠수정은 1980년대부터 다양한 수중관련 기술 및 컴퓨터 발전과, 민군의 사용분야가 증가되면서 급속한 발전을 이루어 왔으며 이에 따라 AUV 자율수준 정의와 기술개발도 급속한 진전이 이루어져 왔다. 본 기고에서는 무인잠수정의 개발현황, 자율개념 및 자율수준(Autonomy Levels for Underwater Vehicle, ALFUV)의 정의, 자율을 정립함에 필요한 방법 또는 기술 등을 알아보고 마지막으로 자율 알고리즘으로 개발된 구조의 표준화를 중심으로 현황을 파악하였으며 또한 미래의 자율수준 개발 동향을 살펴보았다.

  • PDF

무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용 (Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter)

  • 황아롬;성우제;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

자율무인잠수정의 자세계측장치의 개발 (Development of Motion Reference Unit for Autonomous Underwater Vehicle)

  • 김도현;오준호
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.101-108
    • /
    • 1998
  • This paper concerns the navigation algorithm of motion reference unit (MRU) for autonomous underwater vehicle (AUV) We apply the strapdown navigation system using middle level inertial sensors. But, because the MRU consists of inertial sensors, the values of AUV motion calculated by navigation computer are increased by drift property of inertial sensors. Therefore, we propose the attitude algorithm using switching method according to the motion of AUV From this algorithm, the drift terms are eliminated effectively for roll and pitch. But, another device is required for yaw angle.

  • PDF

무인 잠수정의 제어 성능 비교 연구 (Performance Comparison of Control Design for Unmanned Underwater Vehicle)

  • 주성현;양선제;국태용;박종구;김용석;고낙용;문용선
    • 한국해양공학회지
    • /
    • 제32권2호
    • /
    • pp.131-137
    • /
    • 2018
  • In this paper, we propose an adaptive backstepping controller to control the exact position and orientation of a remotely operated underwater vehicle with parametric model uncertainty. To further improve the angular velocity control precision of each thruster, a phase locked loop (PLL) controller has been added to the backstepping controller. A comparison of two backstepping controllers with and without the PLL control loop has been performed using simulations and experiments. The test results showed that the tracking performance could be improved by using the PLL control loop in the proposed adaptive backstepping controller.

적응 이동 구간 칼만 필터를 이용한 무인 잠수정의 항법 시스템에 관한 연구 (A Study on the Underwater Navigation System with Adaptive Receding Horizon Kalman Filter)

  • 조경남;서동철;최항순
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.269-279
    • /
    • 2008
  • In this paper, an underwater navigation system with adaptive receding horizon Kalman filter (ARHKF) is studied. It is well known that incorrect statistical information and temporal disturbance invoke errors of any navigation systems with Kalman filter, which makes the autonomous navigation difficult in real underwater environment. In this context, two kinds of problems are herein considered. The first one is the development of an algorithm, which estimates the noise covariance of a linear discrete time-varying stochastic system. The second one is the implementation of ARHKF to underwater navigation systems. The performance of the derived estimation algorithm of noise covariance and the ARHKF are verified by simulation and experiment in the towing tank of Seoul National University.

무인 잠수정의 퍼지제어 (Fuzzy Control of Underwater Robotic Vehicles)

  • 이원창;강근택
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

심해 무인 잠수정 해미래의 운동 제어 시스템 (Motion Control System of a Deep-sea Remotely Operated Vehicle, Hemire)

  • 최현택;류승철;이판묵;이종무;전봉환;이계홍;김기훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.319-321
    • /
    • 2007
  • This paper introduces a general overview of the 6000m class deep-sea ROV. Hemire and Henuvy. and then describes its motion control system. It is developed by Korea Ocean Research & Development Institute(KORDI) for 6 years since 2001. sponsored by the Ministry of Maritime Affairs and, Fisheries (MOMAF). Hemire is remotely operated by a fiber optic telemetry. where 6 thrusters are controlled by operator in manual mode and by auto depth control and auto heading control in auto mode. In this paper. operational mechanism of manual and automatic mode with some convenient functions for operator is desc.ribed. Finally, results of sea trial conducted at the Philippine sea where a depth is 5.770m are shown.

  • PDF