• Title/Summary/Keyword: 무인화 선박

Search Result 44, Processing Time 0.021 seconds

The Synchronous Control System Design of a Dual Electric Propulsion System for Small Boats (소형 선박용 듀얼 전기추진시스템의 동기제어시스템 설계)

  • Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, electric propulsion systems are used for unmanned surface vehicle, fish finder boat, etc. Some of these propulsion systems can be constructed of two electric motors and propellers for advanced impellent force. In this case, the speed difference generated between two propellers, namely, the synchronous error has a bad influence on the energy efficiency and course error. In this study, a synchronous control system is designed to restrain synchronous error caused by disturbance and mismatched dynamic characteristics. The control system is composed of the reference model, pre-filters, speed controllers, and synchronous controllers. The reference model is used for calculating the decoupled synchronous error and control input for each propulsion system. The pre-filters and speed controllers are designed in order that the propulsion system may follow the reference signal without overshoot and input saturation. And the synchronous controllers are designed from the viewpoint of stable and quick synchronization through root locus mothed approach. Finally, the simulation results show that the designed control system is effective for the disturbance.

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.