• Title/Summary/Keyword: 무인항공시스템

Search Result 448, Processing Time 0.021 seconds

Design of C-Band Frequency Up-Converter in Communication System for Unmanned Aerial Vehicle (무인 항공기의 통신 시스템에 사용되는 C-대역 주파수 상향 변환기 설계)

  • Lee, Duck-Hyung;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.843-852
    • /
    • 2009
  • In this paper, we present design, fabrication, and measured results for a frequency upconverter for a wireless communication system of UAV(Unmanned Aerial Vehicle). The specifications of such wireless communication system requires the special features of maximum range of communication as well as deployment in UAV and repairing. The frequency upconverter operating at $5.25{\sim}5.45\;GHz$ in C-band was designed and fabricated considering such special features. The AGC function was included because the required output power should be constant for optimal system operation. The fabricated upconverter showed a constant output power of $+2{\pm}0.5\;dBm$ for the $-15{\sim}-10\;dBm$ input. Spuriouses were below -60 dBc and the adjacent leakage power was below -40 dBc. In addition, LO sources in the upconverter was implemented using the frequency synthesizer with step 1 MHz. This is for the application to the situation where multiple UAVs employed and the possible change of the permitted frequency band. The synthesizer showed a phase noise of -100 dBc/Hz at the 100 kHz frequency offset.

Object Detection Capabilities and Performance Evaluation of 3D LiDAR Systems in Urban Air Mobility Environments (UAM 환경에서 3D LiDAR 시스템을 통한 객체 검출 기능 및 성능 평가)

  • Bon-soo Koo;In-ho choi;Jaewook Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.300-308
    • /
    • 2024
  • Urban air mobility (UAM) is emerging as a revolutionary transportation solution to urban congestion and environmental issues. Especially, electric vertical take-off and landing (eVTOL) aircraft are expected to enhance urban mobility, reduce traffic congestion, and decrease environmental pollution. However, the successful implementation and operation of UAM systems heavily rely on advanced technological infrastructure, particularly in sensor technology. Among these, 3D light detection and ranging (LiDAR) systems are essential for detecting obstacles and generating pathways in complex urban environments. This paper focuses on the challenges of developing LiDAR-based perception solutions, emphasizing the importance and performance of object detection capabilities using 3D LiDAR. It integrates LiDAR data processing algorithms and object detection methodologies to experimentally validate the effectiveness of perception solutions that contribute to the safe navigation of aircraft. This research significantly enhances the ability of aircraft to recognize and avoid obstacles effectively within urban settings.

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

A Study on Certification Requirements for Small Unmanned Aerial System(sUAS) (소형 무인항공기 운용을 위한 관련법 현황 및 인증방안 연구)

  • Ahn, Hyojung;Park, Jonghyuk
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • Although there are differences in the classification of category adopted by each country, small UAS is usually classified as the one less than 25 kg. UAS has been mainly used for military and public purposes, but in recent years, it has spread to the private sector for hobby, media, and so on. Especially, considering the nature of the operating region and applications, it is necessary to improve operating time, noise and vibration in small UAS to ensure the same level of safety with a manned aircraft. This is because the drone can pose health and safety hazard through collision with manned aircraft or crashing into the ground. In this paper, we investigated operational regulations in the United States and European countries. Based on the investigation, a domestic system development plan for small UAS operation is under development.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

Development of Airframe Structure for Disaster and Public Safety Multicopter UAV (재난치안용 멀티콥터 무인기 기체구조 개발)

  • Shin, Jeong Woo;Lee, Seunggyu;Noh, Jeong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • Airframe structure development of the 35 kg class 'Disaster and Public Safety Multicopter' UAV is described in this paper. To reduce the airframe weight, T-700 grade CFRP composite material was used, and the fuselage was designed with the semi-monocoque structure and plate installed with the control and communication devices designed in a sandwich structure. The specimen tests for the laminated plate and pipe were conducted to verify the strength and stiffness of the designed parts. The stacking sequence of composite materials was determined by the static strength and vibration analysis, and landing gear strut was designed by the nonlinear analysis with decent speed and ground clearance requirements. The static strength test was performed to evaluate the structural integrity and to verify the landing gear behavior.

A Study on how to use drones According to Domestic Coastal Safety System limitations (국내 연안 안전 체계 한계에 따른 드론의 활용방안)

  • Kim, Seung-Han;Kim, Hyo-Joong;Kim, Hyo-Kwan;Cho, So-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.118-127
    • /
    • 2021
  • In spite of various safety measures, coastal safety accidents continue to occur, so this study focused on using drones as countermeasures. Municipalities that already have coasts have begun operating unmanned multicopters for coastal safety management. In particular, by connecting an unmanned multi-copter to the currently applied smart city safety net system, it is possible to transmit real-time images of the scene in case of emergency in the coastal area to the local government safety information center. It is also expected to contribute significantly to strengthening safety management in coastal waters through a more rapid response to safety accidents. Therefore, in this paper, we propose the use of drones as an alternative to the limitations of the domestic coastal safety system by investigating the state of coastal safety accidents and analyzing the state of domestic coastal safety systems. In addition, it is expected to be a key breakthrough in the coastal area safety system by proposing a model linking the Korean K-Drone system.

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.