• Title/Summary/Keyword: 무인항공시스템

Search Result 443, Processing Time 0.027 seconds

Optimal Path Planning for UAVs under Multiple Ground Threats (다수 위협에 대한 무인항공기 최적 경로 계획)

  • Kim, Bu-Seong;Bang, Hyo-Chung;Yu, Chang-Gyeong;Jeong, Eul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • This paper addresses the trajectory optimization of Unmanned Aerial Vehicles(UAVs) under multiple ground threats like enemy's anti-air radar sites. The power of radar signal reflected by the vehicle and the flight time are considered in the performance cost to be minimized. The bank angle is regarded as control input for a 1st-order lag vehicle, and input parameter optimization method based on Sequential Quadratic Programming (SQP) is used for trajectory optimization. The proposed path planning method provides more practical trajectories with enhanced survivability than those of Voronoi diagram method.

Development of Top/Bottom Omni Antenna Selecting System for Unmanned Helicopter (무인헬기 상/하부 전방향 안테나 선택 시스템 구현)

  • Lim, Sung-Ho;Kim, Jae-Kyung;Kwon, Cheol-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.641-651
    • /
    • 2020
  • This paper implements an antenna selection logic that automatically selects omni-directional antennas mounted on the top and bottom of an unmanned helicopter to maintain the link margin of the data link at 0dB or higher during flight. The selection criteria were derived by simulating and analyzing the radiation pattern. In addition, it is implemented to select the optimal antenna in real time during the flight by deriving the directivity angle function.

연구실탐방 - 건국대 항공우주공학과 능동구조재료 연구실, 국내 처음 초소형비행체 개발

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.34 no.12 s.391
    • /
    • pp.26-27
    • /
    • 2001
  • 건국대 능동구조재료연구실은 1991년에 문을 열어 항공우주용 고성능 능동복합재료작동기 개발에 한창이다. 소형 무인항공기, 우주 구조물 및 로봇, 정비기기에 근육형 작동기 응용부품 및 서브시스템을 개발하여 적용함으로써 그 성능을 혁신적으로 향상시키는 것을 최종 목표로 하고 있다.

  • PDF

Controller Design for Unmanned Aerial Vehicle Employing Linux OS (리눅스기만 무인항공기 제어 시스템 설계)

  • Kim, Myoung-Hyun;Moon, Seung-Bin;Hong, Sung-Kyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.377-380
    • /
    • 2003
  • 본 논문에서는 PC104 모듈을 탑재하여 만들어진 무인 항공 제어 시스템에 관한 내용을 기술한다. 임베디드 리눅스를 사용하여 제작된 항공기 제어 시스템은 디바이스 드라이버와 제어 애플리케이션으로 구성되어 있다. PC104 모듈에는 비행에 필요한 외부 장치들이 연결되는데, 연결된 장치에서 측정한 데이터를 처리하여 애플리케이션으로 전달해 주는 역할을 하는 디바이스 드라이버를 설명하고, 디바이스 드라이버에서 전달받은 데이터를 기반으로 구현한 애플리케이션에 대한 내용을 설명한다. 또한 향후 시스템 운용에 시뮬레이션 기능 구현의 필요성과 RTOS 적용 가능성을 제시해 본다.

  • PDF

Design and Implementation of Unmanned Aerial Vehicle's Navigation System Using Kalman Filter (칼만필터를 이용한 무인항공기용 항법시스템의 설계 및 구현)

  • Lee, Jeong-Hwan;Jeong, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2218-2220
    • /
    • 2004
  • 조종사 없이 사전에 입력된 프로그램 또는 인공지능에 의해 기체 스스로 판단하여 자율비행하는 비행체를 무인 항공기라 한다.[6] 이러한 비행을 위해서는 기체의 위치, 자세, 속도 등의 정보가 필요하다. 본 논문에서는 3축 가속도센서 1개 및 1축 자이로센서 3개를 서로 수직으로 구성하는 관성항법 시스템에 자기콤파스, 고도센서, GPS등의 비관성센서를 추가로 구성하여 시스템을 설계하였으며 칼만필터를 이용하여 시스템의 오차를 추정하고 이를 되먹임 시킴으로써 오차를 정정한다.

  • PDF

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

Configuration and Performance Analyses for Conceptual Design of Small and Mid-Unmanned Aerial Vehicles (중소형 무인항공기 개념설계를 위한 형상 및 성능 분석)

  • Jeon, Byung-Il;Lee, Narae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.478-487
    • /
    • 2014
  • The simplified performance analysis and initial configuration design are required for the successful development of UAV during the conceptual design, in which empirical formulas and trend equations are utilized for the UAV performance analysis. In the conceptual design phase various UAV configurations may be considered, however, it is very inefficient and unnecessary to consider all configurations for the conceptual design. In this study, the database for the fixed wing UAVs whose MTOW is between 50kg and 1,500kg was also constructed for the selection of configuration frequently used. The parametric analyses were performed for major performance parameters, and trend equations were developed through regression analyses for these individual performance parameters.

A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle (무인기용 이중화 비행조종컴퓨터의 고장관리 설계)

  • Oh, Taegeun;Yoon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.349-357
    • /
    • 2022
  • Since the flight control computer of unmanned aerial vehicle (UAV) is a flight critical equipment, it is necessary to ensure reliability and safety from the development step, and a redundancy-based fault management design is required in order to operate normally even a failure occurs. To reduce cost, weight and power consumption, the dual-redundant flight control system design is considered in UAV. However, there are various restrictions on the fault management design. In this paper, we propose the fault detection and isolation designs for the dual-redundant flight control computer to satisfy the safety requirements of an UAV. In addition, the flight control computer developed by applying the fault management design performed functional tests in the integrated test environment, and after performing FMET in the HILS, its reliability was verified through flight tests.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.