• Title/Summary/Keyword: 무인궤도운전열차

Search Result 2, Processing Time 0.02 seconds

A Study on the Drive-less Operating Technology using Communication Based Train Control (무선통신기반 열차제어에 의한 무인운전기술에 대한 연구)

  • Jeong, Rag-Gyo;Kim, Baek-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.67-72
    • /
    • 2010
  • In this paper, we verify the driverless operation possibility of MBS, which could overcome the defects of conventional track-circuit-based FBS, such as additional needs of maintenance and others problems according to short-circuit sensibility and, and which could allow the minimal interval between trains. With MBS, we can expect the reduction of headway, then the increase of transportation demand, and the protection of unnecessary speed variation because it allows the real time detection of train position from central office, and direct transmission of data between preceding trains and the following ones. In addition, it is possible to reduce the number of wayside-equipment substantially, to improve the passenger service, and to the achieve the positive economic effects by comfortable ride.

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.