• Title/Summary/Keyword: 무산소.호기조건

Search Result 30, Processing Time 0.028 seconds

Development of Sewage Treatment Apparatus for Detached House in Agricultural Village by Natural Purification Method (자연정화공법에 의한 농촌 전원 독립가구 하수처리장치 개발)

  • Seo, Dong-Cheol;Park, Mi-Ryoung;Kim, Hyung-Jun;Cho, In-Jae;Lee, Hong-Jae;Sung, Sun-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.202-210
    • /
    • 2006
  • To develop small-scale sewage treatment apparatus for detached house of agricultural village, a small-scale sewage treatment apparatus by natural purification method that consisted of packaged form of aerobic, anoxic and anaerobic bed was constructed. The efficiency of sewage treatment according to the sewage treatment method, sewage loading, and the injection method of sewage were investigated for small-scale sewage treatment apparatus of packaged form of aerobic, anoxic and anaerobic bed. The removal rate of pollutants according to the sewage treatment method for small-scale sewage treatment apparatus was high in the order of aerobic-anoxic-anoxic bed < aerobic-anoxic-anaerobic bed. The optimum filter media in small-scale sewage treatment apparatus was a broken stone. The removal rate of pollutants according to sewage loading in small-scale sewage treatment apparatus was high in the order of $1,200L/m^2{\cdot}day\fallingdotseq900L/m^2{\cdot}day\fallingdotseq600L/m^2{\cdot}day$. The removal rate of pollutants according to injection method of sewage in small-scale sewage treatment apparatus was high in the order of continuous injection $\fallingdotseq$ intermittent injection. When loaded under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P were 99, 95, 99, 83 and 96%, respectively, through this 3-stepped small-scale treatment apparatus arrayed with the order of aerobic, anoxic and anaerobic bed.

Characteristics of Biological Phosphorus Removal in the MBR (MBR 공정에서의 인 제거 특성)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2007
  • The reciprocal effects towards the enhanced biological phosphorus removal were performed for anaerobic, aerobic and anoxic phases. The batch experiments showed that the p-absorption in the anoxic phase was 50% lower than aerobic phase. The correlation coefficient between p-back-solution and p-absorption was found to be $R^2=0.557$ however, the coefficient b(b = 8.4049) was relatively higher than the other researchers results. The increase and/or acceptance of the $K^+-,\;Mg^{2+}-$ and $NH_4-N$-concentration was proportional to those of the $PO_4-P$-concentration in the batch test. The relationship between $K^+-,\;Mg^{2+}$ and $PO_4-P$ was determined. The average value of this relation-ship agreed with 0.2 mol $K^+Ion$ / mol $PO_4-P$ ion and 0.21 mol $Mg^{2+}Ion$ / moi $PO_4-P$ ion in the anaerobic phase. The absorbed ratio of $K^+$ to $Mg^{2+}$ over $PO_4-P$ was found to be 1 : 5.

Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance (물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가)

  • Yoon, Cho-Hee;Park, Seung-Hwan;Lee, Sang-Hoon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-239
    • /
    • 2000
  • This study was investigated to estimate optimal conditions and biological oxic denitrification to treat wastewater with low C/N ratio and high strength total inorganic nitrogen (TIN) concentration by using $A_2O$ fixed biofilm system. The lab-scale experimental system packed with media, which were composed of polyvinylidene chloride fiber (oxic basin) and ceramic ball (anaerobic and anoxic basin), was used. This system was operated with various influent alkalinities at the C/N(TOC/TIN) ratio of 0.5. The study results showed that TOC were removed over 96.0% at all operation conditions. The removal efficiencies over 93.5% for $NH_4{^+}-N$ and 81.8% for TIN were obtained at the alkalinity of about 1210mg/L(Run 5). Among the removal of TIN, 64.9% was occurred by biological denitrification at an oxic basin. It was confirmed through mass balance of alkalinity and nitrogen that the amount of alkalinity produced during biological denitrification at oxic basin was 2.49~3.46 mg Alkalinity/mg $NO_2{^-}-N$, ${\Delta}TOC/{\Delta}DEN$ of 0.34 (Run 5) was obtained at an oxic basin, which was less than the theoretical value of 1.22.

  • PDF

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).

The Removal of Organics and Nutrients in an Anoxic/Oxic Process Using Surface-modified Media (표면개질 담체를 이용만 무산소/호기 공정에서의 유기물 및 영양염류 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Surface of hydrophobic media was modified to become hydrophilic by ion beam irradiation. Fixed bed biofilm reactors packed with or without surface modification were used to remove organics, nitrogen, and phosphorus from sewage. This system composed of anoxic/oxic cycles to increase the nutrient removal. A cylindrical polyethylene was used as a packing media in this study. With 12 hours of hydraulic retention time (HRT), the reactors with and without surface modification showed 95% and 92% $COD_{cr}$ removal, respectively. Both reactors showed over 95% $COD_{cr}$ removals for a longer HRT of 16 hours. Nitrogen removal ranged 54.8% to 70.2% for the surface modified system and 57.5% to 76.5% for the non-modified system under same condition. Finally, phosphorus removal ranged 59.4% to 69.8% for the surface modified system and 51.3% to 63.4% for the non-modified system under same condition. From this study organics and phosphorus were better removed in using surface modified media and vice versa for nitrogen removal.

Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots (낚시터로 활용중인 농업용 저수지의 퇴적물 내 영양염류 용출 분석)

  • Joo, Jin Chul;Choi, Sunhwa;Heo, Namjoo;Liu, Zihan;Jeon, Joon Young;Hur, Jun Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.613-625
    • /
    • 2017
  • For two agricultural reservoirs that are rented for fishing spots, benthic nutrient fluxes experiment were performed two times with two sediments from fishing-effective zone and one sediment from fishing-ineffective zone using laboratory core incubation in oxic and anoxic conditions. During benthic nutrient fluxes experiment, the changes in DO, EC, pH, and ORP in the supernatant were not significantly different between fishing-effective zone and fishing-ineffective zone, and were similar to the sediment-hypolimnetic diffused boundary layer in agricultural reservoir. Except for $NO_3{^-}-N$, more benthic nutrient fluxes of $NH_4{^+}-N$, T-P, and $PO{_4}^{3-}-P$ from sediment to hypolimnetic was measured in anoxic than in oxic conditions (p<0.05). As the DO concentration in hypolimnetic decreases, the microorganism-mediated ammonification is promoted, the nitrification is suppressed, and finally the $NH_4{^+}-N$ diffuses out from sediment to hypolimnetic. Also, the diffusion of T-P and $PO{_4}^{3-}-P$ from sediments to hypolimnetic is accelerated through the dissociation of the phosphorus bound to both organic matters and metal hydroxides. The difference in the benthic nutrient diffusive fluxes between fishing-effective zone and fishing-ineffective zone was not statistically significant (p>0.05). Therefore, it was found that fishing activities did not increase the benthic nutrient diffusive fluxes to a statistically significant level. Due to the short fishing activities of 10 years and the rate-limited diffusion of the laboratory core incubation, the contribution of fishing activities on sediment pollution is estimated to be low. No significant correlation was found between the total amount of nutrients in sediment and the benthic nutrient diffusive fluxes in both aerobic and anaerobic conditions. Therefore, nutrients input from various nonpoint sources of watersheds are considered to be a more dominant factor rather than fishing activities in water quality deterioration, and both aeration and water circulation in hypolimnetic were required to suppress the anoxic environment in agricultural reservoirs.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Effect of Microbial Inoculant to Pig Liquid Fertilizer on Germination Index of Chinese Cabbage (돈 분뇨 액비에 미생물 첨가가 배추의 발아지수에 미치는 영향)

  • Kim, T. I.;Yoo, Y. H.;Chung, E. S.;Barroga, Antonio J.;Yang, C. B.;Kim, M. K.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.135-146
    • /
    • 2005
  • This study was carried out to investigate the effect of Synechocystis sp. KACC 91007 when added to a pig slurry or pig liquid fertilizer (PLF) on germination index (GI) of Chinese cabbage. The preliminary experiment involved the screening of inoculant levels which were; 0.05, 0.1, 0.2, and $0.3\%$, respectively. The $0.05\%$ level of inoculant was selected based on low phytotoxicity and high GI.. The PLF underwent a 107 day aerobic and anoxic processing conditions. The T-N, T-P, $NH_4$, and $NO_3-N$ concentrations of the untreated pig slurry were; 2,873, 753, 1,441.6, and 16.48 ppm, respectively. Using aerobic processing treatment, the fertilizer value of the PLF was 3,672, 164, 183.87, and 21.97 ppm, respectively. In contrast, the fertilizer value of the PLF processed under anoxic condition was reduced to 1,261, 68, 161, and 16.87 ppm. The GI value of the untreated PLF under aerobic and anoxic processing condition was 83 and $40.4^{*}\%$, respectively. With the addition of the $0.05\%$ microbial inoculant, the GI improved by more than 40 and $50\%$ respectively, when the PLF was processed under anoxic and aerobic conditions. The above findings proved that the aerobic processing of PLF for 107 days was better than anoxic and yielded higher T-N which is a macro-nutrient fertilizer material. Consequently, the addition of $0.05\%$ microbial inoculant resulted to a higher GI of the Chinese cabbage specifically under aerobic processing condition.

  • PDF

A Study on the Distribution Characteristics of Nitrite Oxidizing Bacteria in Wastewater Nitrification Systems (폐수 질산화 시스템에서 아질산 산화 미생물의 분포 특성 연구)

  • Kim, Sun-Hee;Kim, Dong-Jin;Yoo, Ik-Keun;Cha, Gi-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1024-1030
    • /
    • 2006
  • Genus Nitrospira and Nitrobacter species are the key nitrite-oxidizing bacteria(NOB) in nitrifying wastewater treatment plants. It has been hypothesized that genus Nitrospira are K-strategists(low $K_6$ value) that can exploit low amounts of nitrite more efficiently than Nitrobacter. In contrast, Nitrobacter species are r-strategists(high $V_{max}$) that can grow faster than Nitrospira. It has also been known that the availability of organic compounds and dissolved oxygen as well as nitrite affects the distribution of NOB. In this study, we determined the distribution and competition of NOB in wastewater nitrification systems where nitrite, organic compounds, and dissolved oxygen concentrations were compositively varied. For the purpose, several compounds of the laboratory-scale nitrificaiion bioreactor and full-scale $A_2O$ wastewater treatment plant and their distribution of NOB were analyzed and compared. The analysis showed that Nitrobacter was the dominant NOB in nitrification bioreactor where average nitrite was maintained at 5 mg-N/L with very low organic concentration in aerobic condition, whereas Nitrospira was the dominant NOB in full-scale $A_2O$ plant where nitrite was maintained very low and organic compounds were maintained relatively high in alternating aerobic-anoxic condition. The result indicates that nitrite concentration is more critical factor than organics and dissolved oxygen which determines the dominant NOB in nitrification system and it is confirmed that Nitrospira and Nitrobacter showed the characteristics of r-strategist and K-strategist, respectively.

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.