• Title/Summary/Keyword: 무산소

Search Result 184, Processing Time 0.028 seconds

A Study on the Distribution Characteristics of Nitrite Oxidizing Bacteria in Wastewater Nitrification Systems (폐수 질산화 시스템에서 아질산 산화 미생물의 분포 특성 연구)

  • Kim, Sun-Hee;Kim, Dong-Jin;Yoo, Ik-Keun;Cha, Gi-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1024-1030
    • /
    • 2006
  • Genus Nitrospira and Nitrobacter species are the key nitrite-oxidizing bacteria(NOB) in nitrifying wastewater treatment plants. It has been hypothesized that genus Nitrospira are K-strategists(low $K_6$ value) that can exploit low amounts of nitrite more efficiently than Nitrobacter. In contrast, Nitrobacter species are r-strategists(high $V_{max}$) that can grow faster than Nitrospira. It has also been known that the availability of organic compounds and dissolved oxygen as well as nitrite affects the distribution of NOB. In this study, we determined the distribution and competition of NOB in wastewater nitrification systems where nitrite, organic compounds, and dissolved oxygen concentrations were compositively varied. For the purpose, several compounds of the laboratory-scale nitrificaiion bioreactor and full-scale $A_2O$ wastewater treatment plant and their distribution of NOB were analyzed and compared. The analysis showed that Nitrobacter was the dominant NOB in nitrification bioreactor where average nitrite was maintained at 5 mg-N/L with very low organic concentration in aerobic condition, whereas Nitrospira was the dominant NOB in full-scale $A_2O$ plant where nitrite was maintained very low and organic compounds were maintained relatively high in alternating aerobic-anoxic condition. The result indicates that nitrite concentration is more critical factor than organics and dissolved oxygen which determines the dominant NOB in nitrification system and it is confirmed that Nitrospira and Nitrobacter showed the characteristics of r-strategist and K-strategist, respectively.

Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet (고에너지밀도 펠릿제조를 위한 목재칩 반탄화 특성)

  • Lee, Jae-Won;Kim, Young-Hun;Lee, Soo-Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.385-389
    • /
    • 2012
  • In this study, torrefaction of mixed softwood chips under anoxic condition was performed to improve energy density and maintain consistent quality of biomass. Characteristics of torrefied biomass depending on reaction time (30 min) and temperature (240, 260,$280^{\circ}C$) were investigated. Torrefaction of mixed softwood chips significantly improved the heating value compared to that of untreated biomass. As the torrefaction temperature was increased, the carbon content of torrefied biomass increased from 46.55 to 55.73%, while its hydrogen and oxygen contents decreased from 6.00 to 5.87% and from 30.55 to 27.21%, respectively. Most of hemicelluloses and volatile compounds were removed during torrefaction. The highest heating value was 5132 kcal/kg when torrefaction was performed at$280^{\circ}C$ for 30 min. It implied that the heating value increased by 13% compared to that of original biomass. However, the condition of effective torrefaction was at $240^{\circ}C$ for 30 min when weight loss and energy yield was considered.

A Shallow Water Front and Water Quality in Chinhae Bay (진해만에 형성되는 천해전선과 수질분포)

  • Kum, Cha-Kyum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.86-96
    • /
    • 1997
  • In order to investigate the formation of a shallow water front and its relation to water quality distributions, oceanographic measurements were made, and the numerical computations of the Simpson-Hunter stratification parameter log(H/U$^3$) were performed. It is shown from satellite image and hydrographic data that the shallow water front is formed near the northern Kaduk channel, and the stratification parameter log(H/U$^3$) near the front is in a range of 2.0-2.5. Measured COD (Chemical Oxygen Demand) concentrations in offshore region of the front and in the western part of the bay are below 2.0 mg/1. whereas the concentrations in Masan Bay located in the northern inside of the frontal zone are high as 3.0-5.5 mg/1. COD concentrations decrease gradually from Masan Bay toward the offshore due to the dilution by strong water mixing. Anoxic and hypoxic water masses at the bottom layer in summcr occur in the western part of Chinhae Bay and in Masan Bay, and DO (Dissolved Oxygen) concentrations become low with increasing the stratification parameter. DO concentrations outside the front are more than about 4.0 mg/1, whereas the concentrations inside the front are low. The shallow water front plays a significant role for material transport from coastal area to oceanic area, and the frontal region seems to be important physical and chemical boundaries.

  • PDF

Optimization for Phosphorus Remove by Loess Ball Using Chromobacterium (Chromobacterium을 이용한 황토볼에 의한 인산 제거를 위한 최적화)

  • Choi Du Bok;Lee Choon-Boem;Cha Wol-Suk
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.584-589
    • /
    • 2005
  • To investigate factors affecting the removal of phosphorus from the practical wastewater in the F-STEP PROCESS using a loess ball and Chromobacterium WS 2-14, first, the loess ball size and calcining temperature, initial pH, initial phosphorus concentration, working temperature, and aeration were studied. A $2\~4mm$ of loess ball made at $960^{\circ}C$ of calcining temperature was the most suitable one for the removal of phosphorus. When the initial pH was increased from 3.0 to 6.0, the removal efficiency of phosphorus was increased. Especially, at 6.0 of initial pH, the maximum removal efficiency of phosphorus was $88.7\%$. The maximum removal efficiency of phosphorous was gained, 1.8mg/h when the initial concentration of phosphorous was 5.0mg/1. When the operating temperature was $30^{\circ}C$, the maximum removal efficiency of phosphorus was obtained. In the case of aeration, when it was increased from 0.5 to 5.0L/min, the removal efficiency of phosphorus was increased. On the other hand, above 7.0 L/min, the removal efficiency of phosphorus did not increased. Using the optimum operation conditions, pilot tests for the effective removal efficiency of phosphorus were carried out for 65 days. The average removal efficiency of phosphorus was $92.0\%$. The average removal efficiency of COD, BOD, and SS were 77.1, 74.2, and $86.4\%$, respectively. from the results, it can be concluded that F-STEP PROCESS using loess ball might be useful process for phosphorus removal.

Advanced Wastewater Treatment using Sequencing Batch Reactor on ship's sewage (연속 회분식 공정(SBR)을 이용한 선박 오·폐수의 고도처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.475-480
    • /
    • 2005
  • Lab scale experimental study was carried out for SBR process, to investigate the effects of influent ship sewage organic compound removal and Bacillus sp. state on design parameters. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than $92.0\%$ of chemical oxygen demand(COD) were removed. In addition, about $84.0\%$ of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged $93\%$. The performance load of SBR process was shown to be $0.095kg{\cdot}TOC/m3{\cdot}day$. The pH was decreased from 8.1 to 7.0 within 30 min and increased to 7.3 at the end of anoxic stage, and these phenomena were explained. The sludge produced in the SBR process is characterized by low generation rate (about $0.36kg{\cdot}MLSS/kg{\cdot}TOC$) and excellent settleability. The number of Bacillus sp. in the SBR was $24.2\%$, indicating that Bacillus sp. was a predominant species in the reactor.

Control of $NH_4-N$ in Wastewater Treatment Effluent According to Simplified ASM No. 1 (간략화된 활성슬러지 모델(ASM No. 1)을 이용한 유출수 중 암모니아성 질소의 제어에 관한 연구)

  • Kim, Shin-Geol;Choi, In-Su;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.548-555
    • /
    • 2007
  • The control of wastewater treatment has two merits; one is to regulate water quality of effluent and the other is to reduce the cost of wastewater treatment. The purpose of this study was to control the ammonium nitrogen in effluent that is known to cause eutrophication. The control was based on simplified ASM No. 1 which had 3 component materials and 8 coefficients, and the control method was as following. Firstly the ammonium concentration of inflow was measured and the optimal aeration time in effluent was determined according to simplified ASM No. 1 to be 1.0 mg/L. If ammonium concentration of effluent was not equal to 1.0 mg/L, the influent ammonium was corrected by adaptive control. These processes above were repeatedly performed. The SBR running aerobic-anoxic phase had been controlled for 1 month with this method. As a result, the ammonium concentration of the effluent showed in the range of $0.22\sim3.1$ mg/L with an average concentration of 1.1 mg/L. The adaptive control method used in this study was found very useful to control and predict the effluent concentration of ammonium.

Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND) (동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성)

  • Tian, Dong-Jie;Lim, Hyun-Suk;An, Chan-Hyun;Lee, Bong-Gyu;Jun, Hang-Bae;Park, Chan-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.724-729
    • /
    • 2013
  • Simultaneous nitrification and denitrification (SND) occurs concurrently in the same reactor under micro dissolved oxygen (DO) conditions. Anaerobic zone was applied for phosphorus release prior to an aerated membrane bio-reactor (MBR), and anoxic zone was installed by placing a baffle in the MBR for enhancing denitrification even in high DO concentration in the MBR. Phosphorus removal was tested by alum coagulation in the anaerobic reactor preceding to MBR. DO concentration were 2.0, 1.5, 1.0, 0.75 mg/L in the MBR at different operating stages for finding optimum DO concentration in MBR for nitrogen removal by SND. pH was maintained at 7.0~8.0 without addition of alkaline solution even with alum addition due to high alkalinity in the raw sewage. Both TCODcr and $NH_4^+$-N removal efficiency were over 90% at all DO concentration. TN removal efficiencies were 50, 51, 54, 66% at DO concentration of 2.0, 1.5, 1.0, 0.75 mg/L, respectively. At DO concentration of 0.75 mg/L with addition of alum, TN removal efficiency decreased to 54%. TP removal efficiency increased from 29% to 95% by adding alum to anaerobic reactor. The period of chemical backwashing of the membrane module increased from 15~20 days to 40~50 days after addition of alum.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Characteristic of Mixing and DO Concentration Distribution in Aeration Tank by Microbubble Supply (마이크로버블 공급에 의한 폭기조내 교반과 용존산소 분포 특성)

  • Lim, Ji-young;Kim, Hyun-Sik;Park, Dae-Seok;Cho, Young-Gun;Song, Seung-Jun;Park, Soo-Young;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.251-259
    • /
    • 2016
  • This study examined the DO concentration distribution and ORP distribution using microbubbles on pilot-scale aeration tanks. As a result of MLSS mixing and oxygen transfer phenomenon using microbubbles, different DO concentrations were observed depending on the circulation of the liquid with the microbubble supply location on the lateral of an aeration tank. The simulation results of CFD (computational fluid dynamics) program showed that MLSS mixed with a microbubble supply in the middle the reactor is much better than on the left side of the reactor. A single reactor containing an anaerobic, anoxic, and aerobic zone, was evaluated without partition according to the location of the microbubble supply based on the experiments and CFD analysis. MLSS was separated into solid-liquid by the microbubble supply in the aeration tank. Consequently, selecting the appropriate microbubble size is important for MLSS mixing and was maintained at the proper DO concentration for biological treatment.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Gwangyang and Yeosu Bay, south coast of Korea (광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염)

  • 현상민;이태희;최진성;최동림;우한준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.380-391
    • /
    • 2003
  • Surface sediments were collected from Gwangyang and Yeosu Bays to evaluate their sedimentological characteristics and geochemical aspects of both the benthic environment and heavy metal pollution. The grain size distribution includes both sandy and muddy sediments. Sand-rich sediments occur mainly near the POSCO and the channel between Namhedo and Yeosu Bando, while elsewhere mud-dominated sediments are present. TOC content ranges from 0.2 to 2.1 % and C/N ratios indicate that the range arises from the mix of organic matter. The C/S ratios of this organic matter show that parts of the study area are anoxic or have sub-anoxic bottom conditions. The hydrogen sulfide content of the sediment has a range of 0.7 to 301 ppm, with a high content occurring inshore of Myodo Island, where it indicates a polluted environment. The enrichment factor (Ef) and index of accumulation rate (Igeo) of ten heavy metals (Co, Ni, Cu, Cd, Pb, Li, Zn, V, Cr, Ba) show that parts of the study area contain from one to seven times more Pb and Ba, and from 0.8 to 3.5 times more of the other elements than the mean sediment value. The Igeo values of V and Cd show that different parts of the area can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted. Those areas that have both high levels of enrichment and high accumulation rates of heavy metals contain predominantly fine sediments with a high organic matter and hydrogen sulfide content.