• Title/Summary/Keyword: 무등산 지역

Search Result 40, Processing Time 0.018 seconds

무등산지역 화산암류의 암석화학적 고찰

  • 박병규;김용준;김윤중
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.191-193
    • /
    • 2003
  • 무등산 지역은 광주광역시 동부와 전남 화순군 서부 및 담양군 남부지역이 만나는 곳에 위치한 무등산(1187m)과 그 주위 지역을 포함하는 곳으로, 기존 연구는 광주지질도폭(김규봉 외, 1990)과 동복지질도폭(김봉균과 박병권, 1966)조사에서 비교적 자세히 수행되었으며, 화성암체에 대한 연구는 김용준 교수팀(김용준 외, 2003)에 의해 수행되었다. 본 연구는 이 지역의 화산암류를 중심으로 암석-광물의 화학적 특징, 분출시기 및 광물조성을 밝힘으로서 광주 동부지역에서의 백악기 화성활동과 이들 화산암류의 암석화학적 특징을 밝히는데 있다. (중략)

  • PDF

A Petrological Study of the Mudeungsan Tuff Focused on Cheonwangbong and Anyangsan (천왕봉과 안양산을 중심으로 한 무등산응회암의 암석학적 연구)

  • Jung, Woochul;Kil, Youngwoo;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.325-336
    • /
    • 2014
  • Even though Mesozoic Mudeungsan tuff, located within Neungju Basin, has been named several rock names, it should be named as Mudeungsan tuff due to several evidences, such as fiamme, welded texture and rock fragments in the Mudeungsan tuff. Volcanic eruption boundary between the Cheonwangbong and Anyangsan areas is not clear, but petrochemical and mineral chemical evidences with different ages indicate clear petrological boundary between Cheonwangbong and Anyangsan. The Mudeungsan tuffs from Cheonwangbong and Anyangsan is welded crystal tuff with dacitic composition and were generated from cogenetic calc-alkaline magma in the volcanic arc environment. Geochemical events indicate that magma beneath Cheonwangbong was seems to have been evolved from the magma beneath Anyangsan due to fractional crystallization dominated by plagioclase.

Geology and Landscape of Mt. Mudeung Province Park, Korea (무등산 도립공원의 지질과 경관)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • Mt. Mudeung is located in Gwangju city, Damyang-Gun, Hwasun-Gun and its round form give us the mood of soft and rich. Its location is $126^{\circ}06'-127^{\circ}01'E$ and $35^{\circ}06'-35^{\circ}10'N$ and its highest peak is Cheonwang-bong with the height of 1,187 m. The Gwangju city is located in the West of Mt. Mudeng and the mountain range with a small basin in its East. The pavilion such as the Soswaewon, Songganjeong, Sigyongjeong are distributed along the stream in the north of Mt. Mudeung. The mountain is formed from the volcanic activity, Gwangju cauldron during the Cretaceous. The top part of Mt. Mudeung is composed of dark gray quartz-andesite and its K-Ar whole rock age is $48.1{\pm}1.7Ma$. The composition of the north area, where the Wonhyosa temple is located, is micrographic granite, whereas the composition of south area is rhyolite mainly. The main ridge of Mt. Mudeung runs from North, starting from the Bukbong, to south, passing Cheonwangbong, Jangbuljae and ending Anyangsan. Geologic feature of the mountain includes volcanic landform, mountaineous landform, and stream landform. The Seosukdae, Ipseokdae, Gyubongam, which are main ridges and formed from volcanic activity, are composed of mainly columnar joint. Saeinbong and Majipbong in the south-west are composed of mainly cliff and dome. The typical erosion landform of the mountain has three different types of the weathering-cave, each of which reflect the property of the original rock. Four different area of wide block stream, they makes the geological feature of spring-water, though its scale is small compared to that of water fall.

A Study of Ecological Design Strategies Around National Parks - A Case of Moodeungsan National Park in Korea - (국립공원 주변지역의 생태디자인 적용방안 연구 - 무등산 국립공원을 중심으로 -)

  • Jeong, Kyongyeon;Byun, Byungseol
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Areas around of National Park have been severed eco-corridor of wildlife due to urban expansion and development. Habitats have been fragmented into small pieces. Habitat fragmentation reduces the biodiversity of organisms because the exchange loss and inbreeding of wild fauna and flora. The main cause of the fragmentation of ecological networks in areas around of Moodeungsan National Park are are that the cemetery, cutting of mountain, roads, public parking lots, mountain encroachment by land, urban infrastructure, electric transmission towers, urban area. Area around of National Park must be equipped with ecological networks through an ecological design that can communicate with each other in the national park and urban areas.

A Record and Conservation of Cultural Heritages through Web Ecomuseum : the Case of Mountain Mudeung (웹 생태박물관을 활용한 문화유산의 기록과 보존 : 무등산을 중심으로)

  • Noh, Shi-Hun
    • The Korean Journal of Archival Studies
    • /
    • no.27
    • /
    • pp.209-238
    • /
    • 2011
  • Ecomuseum which appeared in France in 1968 and widely diffused over the world, is a new type of museum. The purpose of this museum is not to simply possess and exhibit the existing relics, but to discover the locational senses of a territory by in-situ conserving and interpreting its entire natural and cultural heritages, and to plan the participation of its population and the development of its local community. The significance of this museum can be found in the recovery of disappearing collective memories of a territory, the restoration of the cultural identity of its population and the revitalization of a underdeveloped area. As the majority of these museums are fragmented or open air museums, an 'web ecomuseum' which makes the remote offering of informations about whole dispersed heritages and their holistic interpretation possible by digitalizing, recording, conserving, interpreting and utilizing related heritages, is necessary. This paper considers the possibility of web ecomuseum and its constitution contents and methods through the case of Mountain Mudeung area. Especially, in relation to the latter, this paper suggests a plan which consists of selection of own local themes, construction of digital archives, design of web expositions and production of electronic cultural maps.

Type and Characteristics of Debris Landform in Mt. Mudeung (무등산 암설지형의 유형과 특징)

  • Oh, Jong-Joo;Park, Seoung-Phill;Seong, Yeong-Bae
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.3
    • /
    • pp.253-267
    • /
    • 2012
  • The study looked into the type and characteristics of debris landforms in Mt. Mudeung. By focusing on the representative area, we aimed to categorize the debris landforms based on the morphologic and genetic characteristcis. The types of debris areas in Mt. Mudeung can be divided into the exposed debris type, mixed type of matrix, and the boulder-hidden type. Supply of block in the debris slope area displays different features depending on types of rocks. For the stony slopes of andesite, the block must be moved from the columnar joint or cliff in the upper part. The andesite debris slopes display dominant edge shape while displaying no round shape. The granite stony slopes display dominant round shape and the present exposed slope was assumed to be formed as the core stone which was deep weathered moved along slope during the periglacial era and the matrix was removed after post-glacial era. The movements of blocks are assumed to be caused by solifluction process. The joint area where granite and andesite areas meet, granite is located beneath andesite area, and this implies that blocks were actively freezing and creeping by solifluction and freezing and thawing at that time. It can be assumes that the granite matrix formed plain slope and then andesite boulder covered up the slope. Currently, the blocks in the stony slopes of Mt. Mudeung shows almost no mobility and the stony slopes created under periglacial climate can be considered to be fossil landform.

  • PDF

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

A Minerlogical Study of Plagioclase in Volcanic Rocks from the Mt. Mudeung Area (무등산지역 화산암류에서 산출되는 사장석의 광물학적 연구)

  • Park Byung-Kyu;Kim Yong-Jun;Kim Youn-Joong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.155-164
    • /
    • 2005
  • Volcanic rocks from the Mt. Mudeung area which are composed of Hwasun andesite, Mudeungsan dacite and Togok rhyolite contain plagioclase phenocrysts in common. Majority of the repeated twins observed in optical microscopy are albite twin and some are pericline twin. EPMA studies of plagioclases from Hwansun andesite, Mudeungsan dacite and Togok rhyolte indicate calcic andesine, andesine-oligoclase, nearly pure albite, respectively Albite twin and pericline twin can be easily distinguished through TEM diffraction patterns, which is quite difficult by optical microscopy. Plagioclases in volcanic rocks from the Mt. Mudeung area do not show e-reflection in (100) electron diffraction patterns, probably because of their high cooling rate, which inhibited phase separations during cooling.

광주천 인근 지하수의 수질 및 안정동위원소 특성

  • Yoon, Wook;Ji, Se-Jung
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.116-120
    • /
    • 2003
  • 광주 지하수의 대수층은 주로 원형의 화강암 저지대 분지에 형성되어 있으며, 동남부 무등산(1,187m) 일대가 지하수의 주요 함양원 이다. 총 7,540 여 개의 지하수 관정으로부터 하루에 양수되는 추정 배출량은 59,455㎥ 이상으로 보고되고 있다(건설교통부,2000년). 도심지에서는 지하수가 생활 및 공업용수로 주로 이용되나, 농촌지역에서는 음용수 및 농업용수로 사용되고 있다. (중략)

  • PDF

Classification of Vegetation Units and Its Detailed Mapping for Urban Forest Management - On Mt. Moodeung in Kwangju, Korea - (도시림(都市林) 관리(管理)를 위(爲)한 식생단위구분(植生單位區分)과 정밀식생도(情密植生圖) 작성(作成) - 광주광역시(光州廣域市) 무등산(無等山)을 중심(中心)으로 -)

  • Cho, Hyun-Je;Cho, Jae-Hyong;Lee, Chang-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.470-479
    • /
    • 2000
  • Management units of forest vegetation established on Mt. Moodeung (1,186.8m), a typical urban forest at Kwangju city located in the southwestern Korea, was classified phytosociologically and its spatial distribution mapped out with special reference to its ecological conservation and management. Management units of this area were classified into three categories; twenty-one higher units, ten lower units and nine lowest units, giving a total of 31 zones. Total area for detailed mapping was 2,779.5ha, of which natural vegetation accounted for 2192.0ha (78.9%), residing in most part of this area, artificial vegetation for 159.1ha (5.7%), and non-forested area including arable area, burned area and others for 428.4ha (15.5%). The ratio of natural forest element showed 93.2%, which is much higher when compared with those of other urban forests.

  • PDF