• Title/Summary/Keyword: 무도상 궤도

Search Result 10, Processing Time 0.033 seconds

A Study on Improvement of Maintenance System for Timber Sleepers of Ballast-less track on Railway Bridge (무도상 강철도 교량상 목침목 유지관리체계 개선방안에 관한 연구)

  • Choi, Jung-Youl;Shin, Tae-Hyoung;Kim, Sang-Jin;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.389-394
    • /
    • 2019
  • In case of damaged timber sleepers, maintenance is carried out according to the track inspection standard. However, it is difficult to detect the extent of damage on the bridge, and maintenance is depended on inspector's judgment. In this study, we propose to improve the evaluation criterion of timber sleepers for the ballast-less tracks on serviced urban railway bridge. The timber sleepers on railway bridge was classified according to degree of damage, and damage scores were calculated for each damage grade. Also we have improved the maintenance system of the timber sleepers through the history management system of the individual timber sleepers on railway bridge. As a results, it was judged that systematic management of timber sleepers could be possible during maintenance.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Analysis of Track-Bridge Interaction and Retrofit Design for Installation of CWR on Non-ballasted Railway Bridge (무도상 철도교 레일 장대화를 위한 궤도-교량 상호작용 해석 및 개량방안 분석)

  • Yoon, Jae Chan;Lee, Chang Jin;Jang, Seung Yup;Choi, Sang Hyun;Park, Sung Hyun;Jung, Hyuk Sang
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigated the change of additional axial stress of rail and reaction force at bridge bearings due to the track-bridge interaction when laying CWR on non-ballasted railway bridges including truss bridges with relatively long span. According to the results of the present study, additional axial stresses of rail and reaction forces at bridge bearings showed a large increase when CWR is installed on the non-ballasted railway bridge. The additional axial stress of rail can be acceptable if sufficient lateral resistance can be obtained. However, if the reaction force increases, there is a risk of damage of the bearing or pier, and therefore, it is necessary to take measures to mitigate the reaction force. It is found that additional axial stress of rail decreases when considering the frictional resistance of the bridge movable support, but its effect on the bearing reaction force is very small. On the other hand, when the longitudinal track restraint decreases, both additional axial stress of rail and bearing reaction force are reduced to a large extent. Also, when the ZLR fastening devices are applied to the region where the additional axial stress of rail is highest, bearing reaction force as well as additional axial stress of rail greatly decreased. Therefore, the application of ZLR fastening devices with the reduction of the longitudinal track restraints is very effective for installing CWR on non-ballasted railway bridges.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

Research on Vibration and Noise Characteristics of Steel Plate Girder Bridge with Embedded Rail Track System (레일매립궤도 시스템이 적용된 판형교의 진동 및 소음특성에 대한 연구)

  • Park, Jeung-Geun;Koh, Hyo-In;Kang, Yun-Suk;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Most of the existing rail structures have undergone a lot of aging since a considerable period of time has passed from completion. In particular, among existing railway bridges, many of the plate girder bridges are older bridges that have lived 40 to 60 years or more. Since the treadmill is directly connected to the girder without the ballast, the running load of the vehicle is directly transmitted to the bridge. Therefore, the shock and noise applied to the bridge are larger than those of the ballast bridge, and the dynamic shock and vibration are also relatively large. Therefore, it is very urgent to develop appropriate maintenance, repair and reinforcement technology for existing steel plate bridge. In this study, the authors introduced the characteristics of embedded rail (ERS) developed for improving the performance of the existing plate girder bridge and the techniques solving the vibration and noise problems. In order to evaluate the vibration and noise reduction performance of ERS, a non-ballast plate girder bridge with 5m length of sleepers installed and a plate girder bridge with ERS were fabricated. And, then, the vibration response generated under the same excitation condition was measured and analyzed. Also, the radiated noise analysis was performed using the vibration response data obtained from the experiment as the input data of the acoustic analysis model. As a result of experiments and analyses, it was confirmed that the plate girder bridge's vibration using ERS was reduced by 15.0~18.8dB and the average noise was reduced by 7.7dB(A) more than the non-ballast bridge.

A comparison study for the track maintenance system for the non-ballast steel plate bridge (무도상 판형교 레일 장대화에 따른 궤도 유지관리 비교연구)

  • Nam, Bo-Hyun;Jang, Tae-Cheol;Woo, Yong-Keun;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.401-410
    • /
    • 2007
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

Dynamic Character Analysis of 3-beam Slab Orbits depending on the Hardening of Rail Pad Stiffnesses (3중보 슬래브궤도의 레일패드강성의 경화에 따른 동적거동 특성분석)

  • Choi, Hyun-Su;Choi, Jin-Yu;Kim, Jung-Hun;Park, Dae-Geun;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.870-873
    • /
    • 2008
  • 레일패드는 궤도전체의 탄성확보 뿐만 아니라 열차하중에 의해 침목으로 전달되는 충격을 완화시켜 침목과 도상의 파손을 방지하는 역할을 하는데, 통과톤수의 증가와 기후적 요인에 의하여 패드가 열화되면 패드의 강성이 증가하게 된다. 패드의 강성이 증가하게 되면 레일을 통해 침목으로 전달되는 충격하중이 증가하게 되어 침목의 파손을 유발할 수 있을 뿐만 아니라 침목하면의 도상에도 과도한 충격하중을 전달하여 도상의 손상을 가속화시킬 수 있다. 또한 레일패드의 강성변화는 궤도의 소음과 레일의 파상마모의 진전에도 영향을 미치게 된다. 따라서 레일패드의 공용기간 중에 적정한 강성을 유지할 필요가 있으며, 통과톤수의 증가에 따른 레일패드의 경화도를 산정하는 방법과 레일패드의 경화가 궤도에 미치는 영향을 정량적으로 분석하여 레일패드의 교체주기에 관한 기준을 마련할 필요가 있다. 본 연구에서는 슬래브의 질량과 일정속도대역에서의 패드강성의 민감도분석을 하여 그 결과를 비교하고 레일패드경화에 따른 대상궤도의 동적거동을 수치해석을 통하여 패드강성과 차량주행속도에 따른 윤중의 변동량과 레일의 변위, 가속도 그리고 침목의 변위, 가속도의 변화정도를 분석해 보았다. 궤도시스템의 동적해석을 위한 해석 프로그램으로는 네덜란드 델프트 공과대학에서 개발된 궤도시스템 전용 해석 프로그램인 DARTS(The dynamic analysis of a rail track structure)를 사용하였다. 대상궤도는 국내 1단계 경부고속철도에서 사용되고 있는 3중보 무도상궤도를 사용하였다.

  • PDF

A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system (방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Lee, Si-Yong;Eom, Mac;Oh, Soo-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.