• Title/Summary/Keyword: 무기화합물

Search Result 246, Processing Time 0.024 seconds

A Study of the Nutritional Composition of Aralia continentalis Kitagawa and Aralia continentalis Kitagawa Leaf (땅두릅과 땅두릅잎의 영양성분에 관한 연구)

  • Han, Gwi-Jung;Shin, Doung-Sun;Jang, Myung-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.680-685
    • /
    • 2008
  • In this study, we assessed the functional characteristics of Aralia continentalis Kitagawa (AcK) and Aralia continentalis Kitagawa leaf (AcK-leaf), including crude saponin contents, antioxidant activity, nutritive elements, dietary fiber, and chlorophyll contents. The results of our analysis of nutritive elements in AcK, the contents of the general components, inorganic components, and vitamins were all relatively high. The contents of inorganic components were also high in the following order: K>Ca>P>Na>Mg. Among vitamins, $\beta$-carotene and vitamin C contents were all high. The crude saponin content was 63.7 mg/g in the AcK and 63.5 mg/g in the AcK leaf, and the antioxidant activity was determined to be relatively high. With regard to the dietary fiber content, the total dietary fiber content was 2.13% (soluble 0.40, insoluble 1.72) in the AcK and 5.98% (soluble 1.06, insoluble 4.89) in the AcK leaf, and the total chlorophyll content was 92.58 mg in the AcK and 147.25 mg/100 g in the AcK-leaf.

Impregnation Effects of Water Soluble Organic and Inorganic Chemicals into Micropore of Cell Wall of Waste Paper fiber(I) (페지섬유의 세포벽 Micropore 속으로 수용성 유기 및 무기화합물 충전효과(제1보))

  • 이병근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 1997
  • The fiber wall filling(FWF) technology, which is based on Precipitatin of fillers in the micropores of the cell wall structure of never-dried chemical pulp fiber, has been developed to improve filling and loading process in papermaking. In presenting FWF technique here, micropores of pulp fiber are first impregnated with an ionic solution of water soluble salt and consecutively impregnated with the second salt solution. This procedure generates an insoluble precipitate within the micropores of cell wall by chemical interaction of these two ionic salt solutions This is the first attempts to use FWF technology for the quality of waste paper grade which is recycled in papermaking, even though this FWF technology has been impressively improved for never-dried chemical pulp in filling and loading process of papermaking. The precipitated amount of CaCO$_3$ and SrCO$_3$ reached 5-6% and 4-5% of the waste paper weight respectively, which was measured by ash content of the burned waste paper fiber. On the other way the precipitated amounts of those materials impregnated into never-dried chemical pulp fiber have reached 17-18% and 16-18% respectively. The micropore loading technique gives optical and physical properties to the handsheets formed with celt-wall-filled fibers which are better than those handsheet properties resulting from conventional loading. The papers made from the cell-wall-filled pulps are stronger than those with the customary location of filler between the fibers.

  • PDF

Changes in the Contents of Some Metabolites and Ions and in Some Enzyme Levels in Rice Plants Grown under Water-and Salt-stressed Condition (수분장애(水分障碍) 및 염장애(鹽障碍)하에서 수도체(水稻體)중 효소수준(酵素水準) 및 유기대사산물(有機代謝産物)과 무기(無機)이온 함량의 변화)

  • Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.135-141
    • /
    • 1982
  • Two rice cultivars, Jinju and Iri 348, were used to compare the changes in the contents of some organic metabolites and ions and in some enzyme levels under water-and salt-stressed conditions. The water loss and proline accumulation under water and salt stresses were accelerated more in the salt-sensitive cultivar Iri 348 than in the salt-tolerant Jinju. The contents of crude protein, total free amino acids, proline and polyphenols increased under water-or salt-stressed rice, but that of reducing sugar increased under water stress only. The water-and salt-stresses induced the high ratio of low molecular organic solutes to crude protein in Jinju but not in Iri 348. The ratio of total free amino acids to crude protein increased under the stressed conditions was likely due to high protease activity. The contents of $Na^+$ and $Cl^-$ were higher in Iri 348 than in Jinju. Iri 348 had higher values of $Na^+/Ca^{2+}$ and monovalent/divalent of cations, but lower of $K^+/Na^+$ than Jinju Rice. The further studies should emphasize to set the correlations between these ratios and tolerance to water and salt stresses among rice cultivars.

  • PDF

Temporal and Spatial Variations of water Quality of the Coastal Saline Groundwaters in Jeju Island (제주도 염지하수 수질의 시공간적 변화)

  • 김성수;김대권;손팔원;이창훈;하동수
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • We have investigated water quality of the coastal saline groundwaters utilized for fish farms in Jeju Island. The water quality investigation included the spatial observations for 75 fish farms during March-May, 1994 and the hi-monthly observations for both coastal saline groundwaters and seawaters at four fish farms from August 1994 to December 1995. Water temperature of the saline groundwaters ranged from 16 to 18$^{\circ}C$ over the study period. Salinity of the saline groundwaters varied between 20.60 ppt and 34.02 ppt, slightly lower than that of the coastal seawaters(26.47~34.53 ppt). This salinity variation must be associated with local precipitation conditions in Jeju Island. The oxygen saturation for most saline groundwater samples was lower than 80%, ranging from 24.7 to 89.8%. The COD and pH values for the saline groundwaters were similar to those for the coastal seawaters. The concentrations of DIP for the saline groundwaters varied between 0.021 mg/L and 0.121 mg/ L, and seasonal variation of DIP in the saline groundwater ranged from 0.014 to 0.077 mg/L, which were higher than that of the coastal seawaters(0.000~0.015 mg/L). Nitrate in the saline groundwaters accounted for more than 90% of the DIM. The maximum concentrations of ammonia, nitrite, nitrate and DIN in the saline groundwaters were 0.085, 0.012, 2.294 and 2.309 mg/L, respectively. These concentrations of the saline groundwaters were considerably lower than those affected culture organisms. Overall, the saline groundwaters utilized for fish farms in Jeju Island appear to maintain good waterquality for fish farms.

The Comparison of Tannins and Nutritional Components in the Acorn of Major Oak Trees in Korea (한국의 주요 참나무류 종실의 탄닌 및 영양성분 비교)

  • Lee, Wi Young;Na, Sung June;Park, Eung-Jun;Han, Sang Urk
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.279-285
    • /
    • 2014
  • Nutritional composition, including total phenolics, tannins and nutrient components, of acorns of Q. actissima, Q. serrata, Q. variabilis and Q. mongolica were analyzed. Acorns were collected from each tree species, which were grown in a seed orchard. Contents of both total phenolics and tannins in acorns of Q. serrata were higher than those of Q. actissima (p<0.05). Interestingly, Q. serrata contained the highest amount of water soluble tannins (71 mg/g dw) and the lowest levels of water insoluble tannins (8.1 mg/g dw) among 4 oak species, resulting that acorns of Q. serrata had the lowest proportion of insoluble tannins. Among 4 oak species tested, Q. mongolicav acorns contained the highest levels of both total dietary fiber (TDF) and ascorbic acid, while the content of beta-carotene in Q. mongolicav was 52-fold lower than that in Q. variabilis ($520{\mu}g/100g$). Our result showed that nutritional composition of acoms was significantly different between oak species, indicating that tastes or nutritional values might be different as well among major oak species in Korea.

Optimizing Culture Conditions to Maximize the Production of Laccase from Pholiota highlandensis (Pholiota highlandensis 유래 laccase 생산을 위한 배양조건의 최적화)

  • Choi, Hye-Ju;Moon, Soo-Jung;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.673-679
    • /
    • 2015
  • The culture conditions needed to maximize the production of laccase from Pholiota highlandensis mycelia were investigated. Among the tested media for laccase production, Coriolus versicolor medium (CVM; 2% dextrose, 0.4% peptone, 0.6% yeast extract, 0.046% KH2PO4, 0.1% K2HPO4, 0.05% MgSO4·7H2O) showed the highest activity for the enzyme. Then, to optimize culture conditions for laccase activity, the influences of various carbon, nitrogen, phosphorus, and inorganic salt sources in CVM were investigated. The optimum culture medium was 2% fructose, 0.4% peptone with 0.6% yeast extract, 0.05% NaH2PO4, and 0.05% MgSO4·7H2O as carbon, nitrogen, phosphorus, and inorganic salt sources, respectively. Several aromatic compounds in the medium enhanced laccase activity to varying degrees. Guaiacol induced maximum laccase production, yielding 114.1 U/ml laccase activity after cultivation for 11 days at 25℃. The optimum pH and temperature for laccase production were 8.0 and 35℃, respectively. Native polyacrylamide-gel electrophoresis (PAGE) followed by laccase-activity staining with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the presence of laccase under the optimum conditions studied. Zymogram analysis of the supernatant culture showed an enzymatic band with a molecular mass of about 90 kDa.

Preparation of Hydrophobic Antimicrobal Compounds Encapsulated Nanoparticles Using Alkoxysilane-functionalized Amphiphilic Polymer Precursor and Their Antimicrobial Properties (실란 기능화 양친성 고분자 전구체를 이용한 소수성 항균물질 담지 나노 입자 제조 및 항균 특성)

  • Kim, Nahae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • In this study, nanoparticles which encapsulated hydrophobic antimicrobial compounds with 50wt% of payload and 70%of solid content were prepared. These nanoparticles could be dispersed at water as well as various medium. Water dispersible organic-inorganic (O-I) hybrid nanoparticles were first prepared using alkoxysilane-functionalized amphiphilic polymer precursors through a conventional sol-gel process. Hydrophobic antimicrobial compound, Eugenol encapsulated nanoparticles were prepared using these O-I hybrid nanoparticles through a new nanoprecipitation process. The effect of various preparation on the size of nanoparticles, amount of payload, antimicrobial activity, and release rate of encapsulated compounds was investigated. All eugenol-encapsulated O-I nanoparticles regardless of preparation condition showed the same minimal inhibitory concentration (MIC) (50mg/ml) and 99% of antimicrobial activity for every strain. Their antimicrobial activity could maintain longer than two weeks. Especially, eugenol-encapsulated O-I nanoparticles prepared using tetraethoxysilane (TEOS) exhibited the highest payload (50wt%) and the lowest release rate which was owing to higher inorganic content in the O-I nanoparticles. And these O-I nanoparticles dispersed in hexanediol (HD) showed the highest antimicrobial activity and solid content (70wt%) because HD acted as a solvent as well as a antimicrobial agent.

Chemical Components of White and Red Lotus (목련과 홍련의 화학성분)

  • Jeong, Chang-Ho;Son, Ki-Bong;Kang, Seon-Gyeong;Shim, Ki-Hwan
    • Journal of agriculture & life science
    • /
    • v.43 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • To get basic data for the utilization of white and red lotus as a raw material in functional food, chemical components of its leaf and root were investigated. Leaf had the highest level of nitrogen free extract and root had the highest level of moisture. The mineral analysis showed K(380.44~1,516.34 mg/100g), Ca(36.67~1,323.92 mg/100g), P(84.02~473.13 mg/100g) and Na(57.73~304.07 mg/100g). The rich free sugars in white and red lotus were glucose(161.12~765.15 mg/100g) and frutose (100.57~901.12 mg/100g). Total amino acid contents in leaf and root of white lotus and leaf and root of red lotus were 6,385.57, 1,162.93, 6,003.01 and 1,242.20 mg/100g, respectively. Although the free amino acid compositions of white and red lotus were different, their major free amino acids were glutamic acid, phenylalanine arginine and tyrosine. The ascorbic acid were 248.65 and 20.99 mg/100g in leaf and root of white lotus, 156.92 and 9.32 mg/100g in leaf and root of red lotus. The leaf of white lotus exhibited the highest total phenolic contents at 24.33 mg/g.

Radio-sensitivity of Human Colorectal Cancer Cell is Regulated by Potassium Cyanate (Potassium cyanate에 의해 조절되는 사람 대장암 세포의 방사선 감수성 변화)

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.125-132
    • /
    • 2019
  • Potassium cyanate (KCN) is an inorganic reagent and can induce the post-translation carbamylation of proteins. The carbamylated reaction in the body is involved in cell death in various diseases. According the results in our previous study, KCN enhances the radiosensitivity of human colorectal cancer cell line, HCT 116 cells. However, it was not enough to confirm the mechanism that KCN works in these cells. To determinated the mechanisms of KCN in the cells with increased radiosensitivity, HCT 116 cells were treated KCN with low-dose gamma-radiation. And then, we examined alteration of the cell cycle, cell proliferation, cytokine level and the activation of cell signaling protein. As a result, cell cycle arrest and cell death were induced by the activation of caspase-3 and PARP in the irradiated cells with KCN treatment. These changes of the irradiated cell with KCN treatment were induced by the release of $TNF-{\alpha}$ via $NF-{\kappa}B$ activation. In conclusions, enhanced radio-sensitivity mediated by KCN induced cell death and it occurs by $NF-{\kappa}B$-dependent $TNF-{\alpha}$ production.

Chemical Components of Propolis and Its Ethanolic Extracts (프로폴리스 및 알콜 추출물의 화학성분)

  • 정창호;배영일;이호재;심기환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.501-505
    • /
    • 2003
  • In order to use as a new functional food material, chemical components of propolis and its extracts were surveyed. The contents of crude fat, nitrogen free extract, crude protein, ash and crude fiber in propolis were 86.41%, 7.32%, 2.71%, 1.05% and 0.20%, respectively. The mineral contents were in the order of Na (120.40 mg%), Ca (115.40 mg%), K (105.87 mg%) and Ca were higher in water extract than alcohol extract. Free sugars were composed of sucrose 152 mg%, glucose 114 mg% and fructose 6 mg%. The major amino acids of propolis were lysine 395.29 mg%, cystine 267.66 mg% and glutamic acid 248.14 mg%, respectively. Eight fatty acids in propolis were identified and the major fatty acids were oleic acid (51.89%), myristic acid (20.86%) and palmitic acid (20.28%). Myricetin, quercetin, apigenin and kaempferol were shown as major flavonols and total flavonol contents were higher in 50% ethanol extract than any other extracts. Major Polyphenol compounds in four kinds of extracts were gallic acid, chlorogenic acid, catechin, epigallocatechin gallate, epicatechin and epicatechin gallate.