• Title/Summary/Keyword: 몰수체

Search Result 53, Processing Time 0.022 seconds

Test for Local Structural Identifiability of Linear Equations of Motion for Submergibles (몰수체 선형 운동방정식의 지역 구조 가식별성 조사)

  • Chan-Ki Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • In this paper, the issue of local structural identifiability of linear equations of motion with non-linear parametrizations is discussed. The test method is resented that provides analytical expressions for information matrices of which the rack determines identifiability. And this method is applied to investigate local structural identifiability of linear equations of motion for a submergible vehicle. As a result, it is showed that with given parameters, the linear equations of motion do not satisfy the definition of local identifiabiliy according Glover & Willems.

  • PDF

Nonlinear Free Surface Flows for an Axisymmetric Submerged Body (축대칭 몰수체에 대한 비선형 자유표면 유동)

  • Chang-Gu Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.27-37
    • /
    • 1991
  • In this paper the nonlinear free surface flows for an axisymmetric submerged body oscillating beneath the free surface are solved and the forces acting on the body are calculated. A boundary integral method is applied to solve the axisymmetric boundary value problem and the Runge-Kutta 4-th order method is used for the time stepping of the free surface location. The nonlinear forces acting on the axisymmetric body are computed and compared with published results.

  • PDF

The Forced Vibration Analysis of Immersed Circular Cylindrical Shell using State Vector and Transfer Matrix (상태 벡터 및 전달 매트릭스를 이용한 원통형 몰수체의 강제 진동 해석)

  • 정우진;신구균;함일배;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.75-79
    • /
    • 1993
  • 본 연구에서는 원통형 셀을 Donnell-Mushitari의 Thin Shell로 모델링하고, 유체의 거동은 Hankel 함수를 배제하고 유한차분법(Finite Difference Method)으로 모델링하여, 상태 벡터(State Vector)해석법, 전달 행렬 및 푸리 에 변환(Fourier Transform)을 사용, 무한 원통형 몰수체의 강제 진동을 해 석하였다.

  • PDF

The Combined Method of Structure Selection and Parameter Identification of Equations of Motion to Analyze the Model Tests of a Submerged Body (몰수체 모형 시험 해석을 위한 운동방정식의 구조 선택 및 계수 식별 결합법)

  • C.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.20-28
    • /
    • 1998
  • To accurately predict the motion of a submergible, the nonlinear structure of dynamic model should be selected and corresponding parameters should be estimated using model test. Providing the model structure, only the values of parameters are unknown and the estimation can thus be formulated as a standard least square problem. Unfortunately, the nonlinear model structure of submersibles is rarely known a prior and method of model structure determination from measurement data of model test should be developed and included as a vital part of the estimation procedure. In this study, the well-known linear least square algorithm for the analysis of model tests and a way to measure the goodness are reviewed, and the identification algorithm based on an orthogonal decomposition method of Gram-Schmidt is extended to combine structure selection and maneuvering coefficients estimation in a very simple and efficient manner. Finally, the efficiency of this algorithm is verified by using simulation and applying to the analysis of model test of a submerged body. As a result, it was verified that this combined method might be very erective in selecting the structure of dynamic model estimating the maneuvering coefficients from measurement fiat of model test.

  • PDF

Experimental Study on the Reduction of Vertical Motion of Floating Body Using Floating-Submerged Bodies Interaction (부유체-몰수체 상호작용을 이용한 부유체 상하운동 저감에 대한 실험적 연구)

  • Shin, Min-Jae;Koo, WeonCheol;Kim, Sung-Jae;Heo, Sanghwan;Min, Eun-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.485-491
    • /
    • 2017
  • An experimental study on the reduction of vertical motion of floating body using floating-submerged body interaction was performed in a two-dimensional wave channel. The system consisting of a floating and submerged body that only move vertically was modeled. This experiment was designed based on the results of theoretical analysis of two-body interaction. The results showed a tendency to significant reduction of heave RAO of floating body due to submerged body. Various connection line stiffness and dimension of the submerged body were applied to investigate the effect of two-body interaction on the vertical motion of the bodies, Heave RAOs of the floating-submerged body were compared with those of single body. From the comparison study, we obtained an optimum condition of connection line and dimension of submerged body for maximum heave reduction at the resonant period of single body.

Captive Model Test of Submerged Body Using CPMC (몰수체의 CPMC 구속모형시험)

  • Kim, Yeon-Gyu;Yun, Kun-Hang;Kim, Sun-Young;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.296-303
    • /
    • 2012
  • The captive model test of submerged body using CPMC(Computerized Planar Motion Carriage) was carried out at the Ocean Basin of KORDI/MOERI. The target model is a submarine with general hullform. The forces and moments acting on the submerged body were measured by 6-axis waterproof gage. The oblique motion test and turning test were carried out in horizontal and vertical planes of the model. Maneuvering coefficients and derivatives were obtained from the test results. The stability indices in horizontal and vertical planes were obtained by using maneuvering derivatives. In this paper the introduction of test equipment and test results are presented.

Calculation of Wave Resistance for a Submerged Body by a Higher Order Panel Method (고차 판요소법을 이용한 몰수체의 조파저항 계산)

  • Chang-Gu Kang;Se-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper, wave resistance for a submerged body is calculated by a higher order panel method. The Neumann-Kelvin problem is solved by the source or normal dipole distribution method. The body surface is represented by a bicubic B-spline and the singularity strengths are approximated by a bilinear form. The results calculated by the higher order panel method are compared with those by the lowest order panel method developed by Hess & Smith. The convergence rate of the higher order panel method is much better than the lowest order panel method. But the wave resistance calculated by the higher order panel method still shows discrepancy with an analytic solution at low Froude number like that by the lowest order panel method.

  • PDF

Study on Maneuvering Characteristics of Submerged Body by Changing Its Design Parameters (몰수체 형상 설계인자에 따른 조종특성 연구)

  • Jeon, MyungJun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Submerged bodies moving underwater behave differently based on their type and assigned mission. This paper describes the dynamic characteristics, including the stability, turning ability, and operational ability, of submerged bodies in relation to design parameters such as the tail cone angle, shape of the control plate, and length of the parallel middle body. A submerged body operated in other countries is adopted as a reference for the dynamic characteristics, its principal dimensions and the shape of the bare hull and appendages are used for comparison. This paper suggests a few candidate hull forms based on changes in the typical design parameters. Finally, the dynamic characteristics for these candidate hull forms are defined.