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Abstract

In this paper the nonlinear free surface flows for an axisymmetric submerged body oscillating be-
neath the free surface are solved and the forces acting on the body are calculated. A boundary integral
method is applied to solve the axisymmetric boundary value problem and the Runge—Kutta 4—th
order method is used for the time stepping of the free surface location. The nonlinear forces acting on

the axisymmetric body are computed and compared with published results.
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1. Introduction ing the time—history of space—periodic ir-
rotational surface waves. The only independent

Nonlinear free surface problems have been variables at the beginning of each time step
solved by a semi—Lagrangian method since were the coordinates and velocity potential of
1976 (Longuet —Higgins and Cokelet [13]). Lo- marked particles on the free surface. At each
nguet—Higgins and Cokelet {13] presented a time—step an integral equation was solved for
mixed Eulerian—Lagrangian method for follow- the new normal component of velocity. This me-

Manuscript received : October 12, 1990, revised manuscript received . February 22, 1991.
*Member, Korea Research Institute of Ships and Ocean Engineering



28

thod was applied to a free, steady wave of finite
amplitude, and was found to give excellent
agreement with calculations based on Stokes’s
series. It was then extended to unsteady waves,
produced by initially applying an asymmetric di-
stribution of pressure to a symmetric, pro-
gressive wave. The results showed the freely
running wave then steepened and overturned.

Using a technique similar to that of Longuet
—Higgins and Cokelet [13], Faltinsen [7]
solved a nonlinear two dimensional free surface
problem including a harmonically oscillating
body. The body intersected the free surface and
was constrained to move in the vertical direc-
tion. The numerical calculations were reduced
by repressenting the flow far away from the
body as a dipole located at the center of the
body. A formula to calculate the exact force on
the body was presented. It was only necessary
to know the velocity potential on the positions
of the free surface and the wetted body surface.

Vinje & Brevig [15] presented a numerical
method for the time simulation of the nonlinear
motions of two dimensional surface—piercing
hodies of arbitrary shapes in water of finite de-
pth. Periodicity in space was assumed. At each
time step, Cauchy’s integral theorem was
applied to calculate the complex potential and
its time derivative along the boundary. The sol-
ution was stepped forward in time by integrat-
ing the exact kinematic and dynamic free—sur-
face boundary conditions as well as the equation
of motion for the body. They solved the problem
of capsizing in beam seas, caused by extreme
waves.

Baker, et al. [2] solved two—dimensional no-
nlinear free surface problems by a dipole (vor-
tex and source) distribution method. The result-
ing Fredholm integral equation of the second
kind was solved by iteration which reduced

storage and computing time. Applications to
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breaking water waves over finite—bottom
topography and interacting triads of surface
and interfacial waves were given.

Dommermuth & Yue [5] extended the semi
—Lagrangian method to vertically axisymme-
tric free surface flows. Since they solved the fi-
nite depth problem, a far field closure was im-
plemented by matching the linearized solution
outside a radiation boundary. The intersection
line between the body and free surface was
treated by extending Lin’s {117} method.

In this paper, the nonlinear hydrodynamics of
an axisymmetric body beneath the free surface
is solved in the time domain. The free surface
shape and the forces acting on a sphere oscillat-
ing sinusoidally with large amplitude are calcu-
lated and compared with published resuits. The
far field flow away from the body is re-
presented by a dipole at the origin of the coordi-
nate system similar to that used by Faltinsen
[7]. This is only valid until waves arrive.
Waves generated by the numerical error at the
truncation boundary are not observed for the
numerical calculations given in this paper.
When the body motion is unknown, the time de-
rivative of the potential on the body is needed
for the time simulation. In two dimensions, Vin-
je & Brevig[16] derived the integral equation
and the boundary conditions for the time deriva-
tive of the potential and stream function. How-
ever their formulas may not be extended to
three—dimensional problems. A three—di-
mensional form is derived in this work. By
using these formulas, the free surface shape and
the equations of motion are solved sim-
ultaneously. A Runge—Kutta fourth order al-
gorithm is employed in the time stepping

scheme.
2. Mathematical Formulation
Consider an ideal fluid below the surface
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given by F(x, 1) = 0, where x(x, 3 z) is a right
—handed coordinate system with z positive up-
wards and the origin located at the mean free
surface. The fluid is assumed to be inviscid and
incompressible and the flow is assumed to be ir-
rotational. The fluid domain is bounded with the
following surfaces, the free surface, Sy, the
body, Sg, and the surfaces at infinity, S. (Fig.
1). The surfaces, taken as a whole, will be de-
noted as S. The governing equation and the
boundary conditions are as follows(Longuet —
Higgins & Cokelet [13] and Dommermuth &
Yue [6]) :
Laplace equation :
Vip =0 in the fluid domain. (1)

Kinematic free surface condition

% =V¢ on  F(x,t)=0. (2)
Dynamic free surface condition
Do loy. _
s gz+ 2 V¢ V¢ on F(x,t)=0. (3)

Body boundary condition :

V¢ n(x t)=V-n on B(x, t)=0. (4)

Radiation condition :

$—0 [x| =00, t<oo. (5)

where l—%—(z % + V¢ - V) is the substant-

ial derivative, F(x, t)=0 is the function re-
presenting the free surface geometry at time t,

V includes both translational and rotational vel-

z

L

A\
»

Fig. 1 Coordinate System
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ocities, and B(x, t)=0, is the function re-
presenting the body surface geometry at time t.

The Green function, G(x; y), satisfies the
following equation.

ViG(x  y) = —8(x ~y) (6)
where x is the position vector to the field point,
y is that to the source point, and 8(x — y) is
the Dirac delta function. Through the
application of Green’s second identity for the

fluid domain, the potential is given as

a(x )6, t>=qt§§ - $= 1GdS (7)

where «a is an included solid angle at X.
The Green function that satisfies Eq. (6) is

1 1
PV =R T Tyl

(8)
where x is the position vector of a field point
and y is that of a source point.

The solution of Eq. (3) gives the potential ¢
on the free surface F(x, t) = 0. Also ¢, on the
body is known from the body boundary con-
dition, Eq. (4). Consequently, a Fredholm inte-
gral equation of the second kind on the body
and of the first kind at the free surface may be
solved.

For axisymmetric bodies, Eq. (7) can be re-

duced as follows (Newman, [14]) :

. 4 _ai —_ _a_ a
a(g,t)¢(§,t)—sfr[an, ¢, 1Gds  (9)

where

dé 4
a — x 7 o T

G J.o R o1 K(m)

G .8 1

on” = 4o porii (g)d6

4 — Id — 14
= 2222 gy w0 22D g

010 f4vy

+ 2 (B(m) ~K(m)In
or
o= (r—r") + (z—2’)?
of = (r+7r)* + (z—2")?
m = 1-p"/pf
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K and E are the complete elliptic integral of
the first and the second kind, (r, z) is a field
point and (', 2") is a source point in the polar
coordinate system.

At the far field, the velocity potential, ¢, and
the wave elevation, 7, are small from the radi-
ation condition, Eq. (5). For example,

$lz=7) = $(2=0) + 7 ﬁa“f (2=0) + O(z)

Assuming the behavior of the potential, ¢, is
like that of a dipole at the origin of the coordi-

nate system, it follows that as r— oo

$(z=0)=0
M gy
?( 2=0) r3
7= {4 ;}(z 0)di ~ [4 713 dt  (10)

1
¢(z=77)~7]‘a‘z‘(2= 0) ~ Y

This is only valid until waves arrive at the
truncation boundary.
The integral over sr in Eq. (9) can be divided

into two integrals :

’ a¢ a .
Ir02 —p321Gs= [ T 2 -9:750
w s 9P o
Yor[az/ ~—¢

where r, is the radius of the numerical trunc-

G3ds +

aqdrt (11)

ation boundary and sr, is the actual computa-
tional free surface for r < r,.. Substituting Eq.
(10) into the second integral of the RHS in Eq.
(11), the following equation can be obtained :

o s a_¢_ _ i at,’
ro [azl ¢azl ]G dr
- ‘[ 0 ;[, [ r’3(r'2— 211’ cosf+ P+ 2)
G

’d 4
812 —2rr cosf + P+ 22)3? 1r'dr

If we take a large value of n, the second inte-
gral on the RHS of Eq. (11) must be relatively
small to the first one. By using integral tables

Chang —Gu Kang
of Gradsteyn & Ryzhik (1980), the following
equations are obtained :

Tr 2%
;[)r[az’

adr’

dr’
—2rr’cosf+ P+ 22

a¢ 2x o0
—77}5 (o) {dﬂ;[; r’¥(r’?

=22 LR g (21 2)

- gy =81 (2)

with

L=ty JP+2 — rJi1-d?
' { " IrrZ+ r/1-

and

du

(P+22)—rredl—u?

» (P+2)+rm J1—&2
+J/(P+2) (B—2rr) 1= + A+ 2

(P D) (B2rr) 1~ + P+ 2

The far field radiation condition is satisfied

L= _j;ln

u.

by including Eq. (12) with its unknown, %Zqi(ro),
in the set of simultaneous linear equations for ¢

on the body and %:— on the free surface.

3. Numerical Implementation

All the boundaries, sy and sp, are discretized
into small segments in order to solve the inte-
gral equations numerically. ¢ and ¢, are
approximated by linear functions of the para-
meter { on a given segment. In particular

$i(Q) = (1= ¢y + (P for0 = ¢ =1,

() = (1= + {Poirs for0<¢=<1.

The geometry of the body and free surface is
represented by a cubic B—spline (Barsky and
Greenberg[3]), or

RO = =é_zlos(o Voo and 2(0)
= 2 bs(O) Vi, (13)
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where bs({) are the uniform cubic B—spline
basis functions and V; are vertices.

The end condition should be imposed to get a
complete B—spline approximation. There are
several methods to impose end conditions ac-
croding to the geometrical characteristics (Bar-
sky[4]). The derivative of B—spline interp-
olation at the end is set to get the tangent of
the given geometry if the tangent is known. If
the tangent is not known, the derivative at the
end is set to be the slope between two vertices
at the end obtained by using B-—spline algor-
ithm.

To evaluate the integrals over the segments
the four point Gaussian Quadrature formula
was used (Ferziger [9]), Abramowitz &
Stegun {1]). In Eq. (9) G4 is not singular but
G? is logarithmically singular as the field point
approaches the source point. The logarithmic
function is integrable and can be integrated by
numerical quadrature. But since an accurate in-
tegration of the logarithmic function requires a
higher order quadrature formula, the method
following Ferziger [9] and Dommermuth &
Yue [5] can be used. The integral can be fac-
tored into the sum of the logarithmic singuiar
part up to {log{ which is integrable analytically
and the non—singular part which requires nu-
merical quadrature(Ferziger[9]).

4. Calculation of the Time Derivative of
Potential

. . . ]
For the time simulation, a—? needs to be

known to calculate the forces and moments act-

ing on the body. For two-dimensional pro-

blems, Vinje & DBrevig(1982) derived an inte-
3¢

gral equation and boundary condition for Py

by using the ¢ and ¢ formulation. However
their results can not be extended to the three—
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dimensional case. Since gin( %% )} can not be

calculated by using the given motion, a bound-

2] . .
ary value problem for Ll , the time derivative

dt
of the potential in body fixed coordinates, is de-

rived as follows :

5 n
dt( Ly=n- S-Ve+ Ve —

=n- [‘%V¢+(X - V)Ve]+ Ve - (wxn)

=n-[V—=+ a¢ +V(V - V¢)+wxVe]

S

4 (14)

+V¢ - (wxn) = 2 (

which can be expressed as

2

9 8. 3V o
on Car )R + wxr — wxVr)(15)

Following the nomenclature of Vinje & Brevig
S . 3
— - VAR
(1982), the operator 51 is ( Y, +V ), V

=Vr+wxr, Vr is the translational velocity of
the center of mass of the body, r is the position
vector to the boundary from the center of mass
of the body, and w is the angular velocity vector
of the body. Eq. (15) is useful in that most
quantities of interest are expressed in the body
coordinate system rather than a fixed, inertial
one.

For axisymmetric motions, the rotational vel-
ocity, w, and rotational acceleration, 9 are zero
and only the z—directional velocity w and accel-
eration a, may not be zero. Thus for
axisymmetric flows, Eq. (15) can be reduced as
follows :

8 ( ) = m,aq, (16)

Smce _\[ - V¢ satisfies Laplace equation, the
%‘lti, can be cal-

culated by using Green's theorem. The limiting

time derivative of the potential,

behavior of V- V¢ at r-»o0 can also be
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checked, or
V- Vg=0(r2) = 0(g) as r—oo (D)

Applying Green'’s theorem for % instead of

¢ in Egs. (1), (6), and (9), the following

equation can be obtained :

8_¢ j— 7 i 8_¢ 8¢ a a
T _sfr[an Car )= ) 5, 1Gds
(18)
. . . )
The time derivative of the potential, i can
be decomposed as follows :
S 8¢1 B¢
i %4 T (19)
. OS¢ OS¢
The auxiliary terms, dt and a’ are solut-
ions of the following boundary value problems :
2 (B, _ 2 2
an(dt)_"’ and ( y=20
on B(x 1)=0 (20)
and
3 _ 8, _ _1
41 =0 and 1 =V - V¢ 2V¢
Ve—gz on Kz =0 (21)

The time derivative of the potential on the

@
dt
utions of the integral equation, Eq. (9).

free surface, =72 is calculated by using sol-

5. The Pressures and Forces

Once the time derivative of the potential is
known, the pressures are found by applying
Bernoulli’s equation. Bernoulli’s equation is de-
rived for the variables relative to an inertial co-
ordinate system. However, it is convenient for
the purpose of solving the boundary value pro-
blem to use body fixed coordinates. Under these
circumstances, spatial differentiation is in-
variant with coordinate transformation, but
temporal differentiation is not. Bernoulli’s

equation can be expressed as

Chang —Gu Kang’

P__9 1o o4
o ot 2 V¢ Vo—gz
_ %
=—— +V. v¢——v¢ Ve-—gz (22)
8¢ . ..
The term ar In the above equation is calcu-

lated by Eq. (19). In this paper the fourth order
Runge—Kutta scheme is employed for time in-

tegration. With the pressure known, the force

becomes
F=ny
= .]S:j' pndS — mgk

= —pﬂg(%—ﬁ . V¢+%V¢ * Vgtgr) -

dS— mgk. (23)
For axisymmetric bodies moving vertically,
only the z—directional force is nonzero :
F,=F+ F+ F+ (0gV —mg) (24)
where ¥V in Eq. (24) is the displaced volume of
a sphere,

S o S ,
F = —pa, fgan, I dS = —pa2rn j;Bn, Fra ds,

= —pﬂnz%ds ——pann,%r ds,

and

F=—p[[n(V-V¢— %w - Vg)dS =
S

—p2r [ n(V - Vg— %Vqﬁ - V) r' ds.(25)

Sg
6. Numerical Calculation

To demonstrate the usefulness of the tech-
nique shown in the previous section, the force
acting on a sphere oscillating beneath the free
surface is computed. The motion of a sphere is
given by z = —h+a cos wt for t greater than
zero. Initially both potential and wave elevation
at the free surface are zero.

The number of elements on the body is 20
and that on the free surface i1s 80. The trunc-
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ation boundary is the position from the origin of
the coordinate system where waves reaches in
four periods of the body motion. So, it depends
on the group velocity of wave, Even spacing is
used on the body and free surface. The typical
time Interval 1s 0.05 times the period of motion
for the time simulation of sphere. The tangential
velocity and the tangent vector on the free sur-
face at the vertical axis (r=0) are set to zero.
These conditions prevent the numerical in-
stability on the free surface at r=0.

The mean depth of immersion for the center
of the sphere, h, is h/R=2.0 Two different am-

plitudes of motion are considered. The time his-

Total force | — w _ F]  ecoc-a-e F2 —--—~F3

Fig. 2 Time History of the Force Components
Acting on the Sphere
(a/R=0.1, h/R=2.0, KR=1.0)

Total force — — — FI  ==r=-=e P —-—-F

Fig. 3 Time History of the Force Components
Acting on the Sphere
(a/R=05, h/R=2.0, KR=1.0)
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tory of the force acting on the oscillating sphere
with a small ratioc of motion amplitude, a, to
radius, R, (a/R=0.1) was calculated and is
shown in Fig. 2 in which the time history of
various force components F,, F;, and F; are also
shown. When a neutrally buoyant body is con-
sidered, the buoyancy force cancels the weight
of the body exactly. The forces were no-
ndimensionalized by pogKaR? where K is a wave
number, w?/ g, and g is the gravitational con-
stant. Fig. 3 Is similar to Fig. 2 with the
exception of an increase in amplitude of motion
(a/R=0.5). The primary non-—linear com-
ponent, F3, has increased significantly. The har-
monic distribution of the total force for differ-
ent values of KR is shown in Fig. 4 and in
Table 1. Fig. 6 shows the three dimensional
wave profiles at six different times (t'(1/Kg)
=1.253, 7.829, 10.647, 20.355, 23.174, 26.618).
For comparison with previously published re-
sults, Fig. 5 shows the time history of the force,
Eq. (24), and the results given by Ferrant [8].
The body boundary conditions in his paper were
satisfied on both the mean position and the
exact position of the body. The first bedy bound-
ary condition, for the purpose of this work, is
defined as ‘linear’ body boundary condition.
The second body boundary condition is defined

T T T e e e e e e e e

Fig. 4 Harmonic Distribution of the Total Force
Acting on the Sphere
(a/R=05, h/R=2.0, KR=1.0)
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as ‘nonlinear’ body boundary condition,
although is not truly nonlinear as long as the
body motion is prescribed. Ferrant [8] pre-
sented solution for ‘linear’ and ‘nonlinear’
body boundary conditions, which are time de-
rivatives of the potential in the body —fixed co-
ordinate, i.e. (Fi+F). His free surface con-
dition was still linear. He solved the boundary

value problems in the frequency domain, not in

Table 1. Harmonic Distributions of the Total Force
at a/R=0.5 and h/R=2.0

F/pgKaR?

KR {I-TH COos SIN

0.25] 0 0.8737575E—01 0.0000000E +00
1 0.2271135E+01 0.1923279E+00
2 |—0.3142179E—-02 | 0.1824121E+00
3 |—0.5602978E—~01 0.6227515E—01
4 |—0.1679305E—01 0.1419030E —01

0.5 0 0.8123831E—-01 0.0000000E + 00
1 0.2152092E+01 0.3875170E+00
2 [—0.1033199E+00 0.1143350E +00
3  |—0.9440308E—01 0.2080585E —01
4 —0.1984028E—01 | —0.8838424E —02

0.75{ 0 0.3723103E—01 0.0000000E + 00
1 0.1964790E+01 0.3860812E +00
2 |—0.1026890E+00 | 0.7736817E—01
3 —0.7346786E—01 | —0.1491389E—-01
4 |—0.5125929E—-02 | —0.1449216E—01

1.0 0 |—0.2702199E—-01 0.0000000E + 00
1 0.1848863E+01 0.3065330E+00
2 —0.1106138E+00 0.5816335E —01
3 —0.5166593E—01 |—0.1822874E —01
4 0.1568122E—02 [—0.8852214E —02

1.5 1 [—0.8824293E—01 0.0000000E +00
2 0.1785480E+01 0.1367325E+00
3 |—0.1084778E+00 0.1043831E—-01
4 1—0.3629696E—01 | —0.1237296E —01
5 0.1506353E—02 |—0.2379999E —02
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the time domain. The fundamental force com-
ponents for the ‘linear’ problem, Ferrant’s com-
bined linear/‘ nonlinear’ solutions, and the total
nonlinear force of this work are presented in
Table 2. Ferrant’s ‘nonlinear’ solution (a/R=
0.5) shown in Fig. 5 is greater than the ‘linear’
one. The results (a/R=0.5) given in Fig. 5
show that the full nonlinear solution is less than
the ‘linear’ solution. This means that the force
increases due to the ‘nonlinear’ effect of the
body boundary condition but it decreases more
due to the nonlinear effect of the free surface
condition. We therefore should be careful when
we calculate the total force which includes in-
consistent nonlinearities.

To investigate the effects on nonlinearity of
the motion amplitude and the submerged depth,
Fig. 7 (a/R=0.7) shows the results for the in-

creased amplitude and Figs. 8 —11 show the no-

ANANN
UAVAVATAY

—— Full Nonlinear — — Ferrant{linear) ---- Ferrant{total)’

Fig. 5 Comparison of Two Nonlinear Predictions of
the Force Time Histories
(a/R=0.5, h/R=2.0, KR=1.0)

Table 2. Fundamental Force Components
at KR= 1.0, a/R=0.9, and h/R=2.0

F/ogKaR?®
Li Linear FSBC/ Nonlinear
%87 | Nonlinear BBC|  Eq. (24)

COS|0.185E+01|0.1825292E+01 [0.1848863E + 01
SIN |0.30 E+00|0.2988316E+00|0.3065330E+ 00
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nlinear solutions for the different submerged de-
pth (h/R=1.8). The harmonic distributions of
the total force for the above cases are shown in
Table 3. From Figs. 7—11 and Table 3, the no-
nlinear behavior is strong in low frequency and
small submerged depth. But the nonlinearity for
a submerged sphere i1s not dominant in the re-
gion where the nondimensional wave number,
KR, is greater than 1.0 or the submerged depth,
h/R, is greater than 2.0.

- -—

t = 1283 ' = 20.355
t'm- 7.829 t'= 23174
¢ = 10.647 ¢t = 26818

Fig. 6 Wave Shapes in the Time Domain
(a/R=0.5, h/R=2.0, KR=1.0)

N . FORCE (F’)
<”’\
1
2
<; ‘
» ._!’,'<

Total force

———-n

Fig. 7 Time History of the Force Components
Acting on the Sphere
(a/R=0.7, h/R=2.0, KR=1.0)
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7. Conclusion

In this paper the nonlinear hydrodynamics of
an axisymmetric body beneath the free surface
1s solved in the time domain. The free surface
shape and forces acting on a sphere oscillating
sinusoidally with large amplitude are calculated

and compared with other results already pub-

Table 3. Harmonic Distributions of the Total Force.

F/pgKaR?
a/R=0.7, h/R=2.0
KR |1-TH cos SIN
1.0| 0 |—0.337773000000E—01] 0.000000000000L+ 00
1 0.183217500000E+01{ 0.325255600000C 400
2 | —0.169225800000E+00| 0.730429400000C—01
3 | —0.845205700000E —01 | —0.484398600000E —01
4 0.820015900000E —02 | —0.317203300000% —01
5 | —0.584934000000E-02| 0.184229400000E—02
| 6 |—0.389760000000E-03| 0.798111100000E~02
a/R=0.5, h/R=1.8
KR{I-TH|’ Cos SIN
025 0 0.162845700000E+00|  0.000000000000L + 00
1 | 0.244641100000E+01] 0.228842100000E+00
2 0.920997900000E~01|  0.381788400000L+00
3 | —0.117049600000E+00| 0.175732900000E +00
4 | ~0.778913900000E—~01| 0.307682700000E —01
0.5 0 0.151077800000+00| 0.000000000000F + 00
1 0.224444300000E+01 0.520554100000L+ 00
2 —0.206424300000F +00 0.239120500000E +00
3 —0.165133700000E+00| 0.403128400000E 01
4 —0.5236115000002—01 | —0.447383800000E—01
L0 0 | —0.475435300000E—02| 0.000000000000E+00
1 0.180400700000E + 01 0.464940400000E 400
2 —0.177539500000L + 00 0.781713100000E—01
3 —0.714032200000E ~01 | —0.564140600000E —01
4 0.168010400000E —01 | —0.230450200000FE —01
15| 0 | —0.116472500000C+00]  0.000000000000E+00
1 | 0.168629800000E+01| 0.224889600000E+00
2 —0.164829600000E+00; 0.802789000000E —02
3 —0.338883300000L—01 | ~0.301283200000E —01
4 0.841068800000E—02 | ~0.211544500000F — 02
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lished. The far field flow away from the body is
represented by a three dimensional dipole at the
origin of the coordinate system. This is only
valid until waves arrive at the truncation
boundary. Waves generated by the numerical
error at the truncation boundary are not ob-
served for the numerical calculations given in
this paper. The integral equation and boundary
conditions to calculate the time derivative of the
potential on the body are derived. By using
these formulas, the free surface shape and

Chang —Gu Kang

equations of motion are calculated sim-
ultaneously. A Runge—Kutta 4—th order
scheme 1s employed in the solution method. No-
nlinear effects on the oscillating body sub-
merged in infinite water depth are studied. The
magnitude of force increases due to the ‘no-
nlinear’ effect of the body boundary condition
but decreases more due to the nonlinear effect
of the free surface condition. Consequently, care
should be exercised when hydrodynamic forces

are found by including inconsistent no-

Total force ———— = Fl eemeeeee R ——-—-F3

Total force — — — —F]  ----ooee 2 —-—-F

Fig. 8 Time History of the Force Components
Acting on the Sphere
(a/R=0.5, h/R=1.8, KR=1.5)

Total force — — — —Fl  -----ce- R’ —-—-HR8

Fig. 10 Time History of the Force Components
Acting on the Sphere
{(a/R=05, h/R=1.8, KR=0.5)

Total force = — ~~ —Fl  ~core—-- 2 —-—-F3

Fig. 9 Time History of the Force Components
Acting on the Sphere
(a/R=0.5, h/R=1.8, KR=1.0)

Fig. 11 Time History of the Force Components
Acting on the Sphere
(a/R=0.5, h/R=1.8, KR=0.25)
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nlinearities.

The nonlinear behavior is strong in low fre-
quency and for small submerged depth. But the
nonlinearity for a submerged sphere is not domi-
nant in the region where the nondimensional
wave number, KR, iIs greater than 1.0 or the

submerged depth, h/R, is greater than 2.0.
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