• Title/Summary/Keyword: 몬테 카를로 모사

Search Result 14, Processing Time 0.033 seconds

Wavelet-Monte Carlo Simulation for Virtual Fabric Imaging (웨이블릿-몬테 카를로법을 이용한 가상 직물이미지의 모사)

  • Joo-Yong, Kim
    • Science of Emotion and Sensibility
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2004
  • The algorithm developed in this paper allows us to generate or synthesize a large amount of data sets using only a small amount of signal features obtained from the original data set. Because the simulated density profiles of yarns retain the original features without a significant loss of information on the location of imperfections, the resulting fabric images are likely to resemble the original images. The data expansion system developed could generate a large area of fabric images by combining the Monte Carlo simulation and the wavelet sub-band exchange algorithm developed. The system has proven effective for simulating realistic fabric images by retaining the location of imperfections such as neps, thin and thick places.

  • PDF

Monte Carlo 모사, 그리고 분자동역학

  • 유동훈;이진호
    • Journal of the KSME
    • /
    • v.44 no.3
    • /
    • pp.55-63
    • /
    • 2004
  • 이 글에서는 마이크로와 나노스케일의 해석에 사용하는 수치모사 방법인 직접모사 몬테 카를로 (Direct Simulation Monte Carlo : DSMC)방법과 분자동역학(Molecular Dynamics: MD)과이 관계에 대하여 설명한다.

  • PDF

Uncertainty Assessment Using Monte Carlo Simulation in Gas Flow Measurement (기체 유량 측정에서 몬테 카를로 모사를 이용한 측정불확도 평가)

  • Lee, Dae-Sung;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1758-1765
    • /
    • 2003
  • Monte Carlo simulation(MC) method was used as an uncertainty assessment tool for gas flow measurement in this paper. Uncertainty sources for gas flow measurement were analyzed, and probability distribution characteristics of each source were discussed. Detailed MC methodology was described including the effect of the number of simulation. The uncertainty result was compared with that of the conventional sensitivity coefficient method, and it was revealed that the results were different from each other for this particular gas flow measurement case of which the modelling equation was nonlinear. The MC was comparatively simple, convenient and accurate as an uncertainty assessment method, especially in cases of complex, nonlinear measurement modelling equations. It was noted that the uncertainty assessment method should be selected carefully according to the mathematical characteristics of the measurement.

Simulation of Interlinkage of Grain Boundary Gas Bubbles to Free Surfaces by the Monte Carlo Technique (몬테 카를로 기법을 이용한 결정립계 기포의 자유 공간으로의 연결 모사)

  • Koo, Yang-Hyun;Park, Heui-Joo;Sohn, Dong-Seong;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.374-380
    • /
    • 1994
  • A method to simulate the extent of interlinkage of grain boundary gas bubbles to the free surfaces of fuel pellet was developed. With the shape of UO$_2$gain treated as tetrakaidecahedron (TKD)), the interlinked fraction of fission gas bubbles to free surfaces at grain comers was calculated as a function of the radius of grain corner bubbles by the Monte Carlo technique. In spite of two dimensional analysis, the present method shooed reasonable agreement between predicted and measured fuel swelling at the moment that complete bubble interlinkage was achieved. However, for more realistic simulation of interlinkage, grain comer bubbles should be treated three dimensionally.

  • PDF

Comparison of Film Measurements, Convolution$^{}$erposition Model and Monte Carlo Simulations for Small fields in Heterogeneous Phantoms (비균질 팬텀에서 소조사면에 대한 필름측정, 회선/중첩 모델과 몬테 카를로 모사의 비교 연구)

  • 김상노;제이슨손;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • Intensity-modulated radiation therapy (IMRT) often uses small beam segments. The heterogeneity effect is well known for relatively large field sizes used in the conventional radiation treatments. However, this effect is not known in small fields such as the beamlets used in IMRT. There are many factors that can cause errors in the small field i.e. electronic disequilibrium and multiple electron scattering. This study prepared geometrically regular heterogeneous phantoms, and compared the measurements with the calculations using the Convolution/Superposition algorithm and Monte Carlo method for small beams. This study used the BEAM00/EGS4 code to simulate the head of a Varian 2300C/D. The commissioning of a 6MV photon beam were performed from two points of view, the beam profiles and depth doses. The calculated voxel size was 1${\times}$1${\times}$2$\textrm{cm}^2$ with field sizes of 1${\times}$1$\textrm{cm}^2$, 2${\times}$2$\textrm{cm}^2$, and 5${\times}$5$\textrm{cm}^2$. The XiOTM TPS (Treatment Planning System) was used for the calculation using the Convolution/Superposition algorithm. The 6MV photon beam was irradiated to homogeneous (water equivalent) and heterogeneous phantoms (water equivalent + air cavity, water equivalent + bone equivalent). The beam profiles were well matched within :t1 mm and the depth doses were within ${\pm}$2%. In conclusion, the dose calculations of the Convolution/Superposition and Monte Carlo simulations showed good agreement with the film measurements in the small field.

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Seismic Reliability Assessment of the Korean 345 kV Electric Power Network considering Parallel Operation of Transformers (변압기의 병렬 운전을 고려한 국내 345kV 초고압 전력망의 지진 재해 신뢰성 평가)

  • Park, Won-Suk;Park, Young-Jun;Cho, Ho-Hyun;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.13-20
    • /
    • 2006
  • Substations in electric power transmission network systems (EPTS) operate using several transformers in parallel to increase the efficiency in terms of stability of energy supply. We present a seismic reliability assessment method of EPTS considering the parallel operation of transformers. Two methods for damage state model are compared in this paper: bi-state and multi-damage model. Simulation results showed that both models yielded similar network reliability indices and the reliability indices of the demand nodes using hi-state model exhibited higher damage probability. Particularly, the corresponding EENS (Expected Energy Not Supplied) index was significantly larger than that of the multi-damage state.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Optimization of the Deep-sea Pressure Vessel by Reliability analysis (신뢰성 해석을 이용한 심해용 내압용기의 최적화)

  • JOUNG TAE-HWAN;HO IN-SIKN;LEE JAE-HWAN;HAN SEUNG-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.190-197
    • /
    • 2004
  • In order to consider statistical properties of probability variables used in the structural analysis, the conventional approach using the safety factor based on past experience usually estimated the safety of a structure. Also, the real structures could only be analyzed with the error in estimation of loads, material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis. In this paper, we estimated the probability of failure of the pressure vessel. And also, this paper presents sensitivity values of the random variable. Finally, we show that reliability index and probability of failure can present the tolerance limit of dimension of randam variables.

  • PDF