• Title/Summary/Keyword: 몬테칼로 모사

Search Result 78, Processing Time 0.031 seconds

Diagnostic X-ray Spectra Detection by Monte Carlo Simulation (진단용 X-선 스펙트럼의 몬테칼로 전산모사 측정)

  • Baek, Cheol-Ha;Lee, Seung-Jae;Kim, Daehong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.289-295
    • /
    • 2018
  • Most diagnostic devices in the medical field use X-ray sources, which emit energy spectra. In radiological diagnosis, the quantitative and qualitative analyses of X-rays are essential for maintaining the image quality and minimizing the radiation dose to patients. This work aims to obtain the X-ray energy spectra used in diagnostic imaging by Monte Carlo simulation. Various X-ray spectra are simulated using a Monte Carlo simulation tool. These spectra are then compared to the reference data obtained with a tungsten anode spectral model using the interpolating polynomial (TASMIP) code. The X-ray tube voltages used are 50, 60, 80, 100, and 110 kV, respectively. CdTe and a-Se detector are used as the detectors for obtaining the X-ray spectra. Simulation results demonstrate that the various X-ray spectra are well matched with the reference data. Based on the simulation results, an appropriate X-ray spectrum, in accordance with the tube voltage, can be selected when generating an image for diagnostic imaging. The dose to be delivered to the patient can be predicted prior to examination in the diagnostic field.

Development of an MCNP-Based Cone-Beam CT Simulator (MCNP 기반의 CBCT 전산모사 시스템 개발)

  • Lim, Chang-Hwy;Cho, Min-Kook;Han, Jong-Chul;Youn, Han-Bean;Yun, Seung-Man;Cheong, Min-Ho;Kim, Ho-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.351-359
    • /
    • 2009
  • We have developed a computer simulator fur cone-beam computed tomography (CBCT) based on the commercial Monte Carlo code, MCNP. All the functions to generate input files, run MCNP, convert output files to image data, reconstruct tomographs were realized in graphical user-interface form. The performance of the simulator was demonstrated by comparing with the experimental data. Although some discrepancies were observed due to the ignorance of the detailed physics in the simulation, such as scattered X-rays and noise in image sensors, the overall tendency was well agreed between the measured and simulated data. The developed simulator will be very useful for understanding the operation and the better design of CT systems.

Development of a Proton Computed Tomography System with Monte Carlo Simulation (양성자 전산화 단층 촬영 장치 개발에 관한 전산모사 연구)

  • Seo, Jeong-Min;Kim, Chan-Hyeong
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.215-219
    • /
    • 2011
  • Monte Carlo simulation was performed to investigate optimal system of proton computed tomography and to avoid the errors by using data from X ray computed tomography in proton therapy. The informations from two DSSDs to measure position and LYSO scintillation detector to measure the residual energy of proton particle in GEANT4 were used for reconstruction computed tomography.

Assessment of Organ Dose in Mammoplasty Patient by Monte Carlo Simulation during Mammography (유방촬영 시 몬테칼로 전사모사를 이용한 유방 성형 환자의 장기선량 평가)

  • Kim, Ji-Soo;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.337-341
    • /
    • 2020
  • Although the screening with a mammography has been shown to be economical, simple and effective in detecting breast cancer, it is accompanied by the risk from radiation. Therefore, this study analyzed the glandular dose and organ dose according to the target-filter combination and the presence and absence of implants using Monte Carlo simulation. The results indicate that at a tube voltage of 30 kV and a tube current of 50 mAs, the dose increased in the order of Mo/Mo. Mo/Rh, Rh/Rh and W/Rh in proportion to the atomic number of the target-filter. In addition, in phantom without implant a reduction in dose was seen when compared to the phantom with implant. The organ dose was highest in the lens except for the breast on the examination side regardless of the presence or absence of the implant. These results may contribute to use basic data for the diagnostic reference level of breast plastic surgery patients.

A Monte Carlo Simulation for the Newly Developed Head-and-Neck IMRT Phantom: a Pilot Study (제작된 선량 검증용 IMRT 팬텀의 몬테칼로 시뮬레이션: 예비적 연구)

  • Kang, Sei-Kwon;Cheong, Kwang-Ho;Ju, Ra-Hyeong;Cho, Byung-Chul;Oh, Do-Hoon;Kim, Su-SSan;Kim, Kyoung-Ju;Bae, Hoon-Sik;Han, Young-Yih;Shin, Eun-Hyuk;Park, Sung-Ho;Lim, Chun-Il
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.126-133
    • /
    • 2007
  • A head-and-neck phantom was designed in order to evaluate remotely the quality of the delivery dose of intensity modulated radiation therapy (IMRT) in each institution. The phantom is homogeneous or inhomogeneous by interchanging the phantom material with the substructure like an air or bone plug. Monte Carlo simulations were executed for one beam and three beams to the phantom and compared with ion chamber and thermoluminescent dosimeter (TLD) measurements of which readings were from two independent institutions. For single beam, the ion chamber results and the MC simulations agreed to within about 2% TLDs agreed with the MC results to within 2% or 7% according to which institution read the TLDs. For three beams, the ion chamber results showed -5% maximum discrepancy and those of TLDs were $+2{\sim}+3%$. The accuracy of the TLD leadings should be increased for the remote dose monitoring. MC simulations are a valuable tool to acquire the reliability of the measurements in developing a new phantom.

  • PDF

Study on the 6 MV Photon Beam Characteristics and Analysis Method from Medical Linear Accelerators Using Geant4 Medical Linac2 Example (GEANT4 Medical Linac2 예제를 이용한 6 MV 선형가속기 광자선속의 기초특성과 연구방법)

  • Kim, Byung-Yong;Kim, Hyung-Dong;Kim, Sung-Jin;Oh, Se-An;Kang, Jung-Gu;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In this study, Geant4 based Monte Carlo simulations were carried out for medical linear accelerator. Modified Medical Linac2 toolkit was used for calculation. The energy spectrum, most probable energy and the photon mean energy compared with the published results using the EGS4 code. The results well agreed with published results. The calculated results of photon fluence, energy fluence and mean energy according to the radius from the centre of the beam were analyzed. Monte Carlo simulation using Medical Linac2 code is considered to be useful for analysis of medical linear accelerator. Because the calculated results varies depending on Physics List model for same head structure. It it important to choose the right model for research purpose. Monte Carlo simulation using GEANT4 Medical Linac2 is a valuable for any novice to adopt this code to the study related to 6 MV photon fluence from medical linear accelerator.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

MCNP코드를 이용한 영광3호기 방사선관리구역에서의 중성자 스펙트럼 계산

  • 한치영;김종경;조찬희;신상운;송명재
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • 영광3호기 방사선관리구역에 대한 중성자선량률을 정확히 평가하기 위하여 MCNP4A 전산코드를 이용, 방사선관리구역에서의 중성자 스펙트럼 계산을 수행하였다. 영광3호기에 대한 보다 정확하고 정밀한 3차원 몬테칼로 모델을 구축하기 위하여 핵연료집합체 구성요소 및 원자로심을 둘러싸고 있는 baffle, barrel,압력용기 등을 정확하게 묘사하였으며, 특히 방사선관리구역 주위의 구조물에 대해서도 3자원 MCNP 모델을 구축함으로써 원자로심부터 방사선관리구역까지 완전한 몬테칼로 모사(full-scope Monte Carlo simulation)를 이용한 계산을 수행하였다. 계산결과는 에너지 구간에 따른 중성자속 스펙트럼으로 나타내었으며 이 결과를 바탕으로 중성자속에 대한 선량률 환산인자를 고려하여 중성자선량률을 계산할 수 있다.

  • PDF