• Title/Summary/Keyword: 목표하중

Search Result 193, Processing Time 0.024 seconds

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Load & Resistance Factors Calibration for Limit State Design of Non-Perforated Caisson Breakwater (직립무공케이슨방파제 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.351-355
    • /
    • 2019
  • Load resistance factors for the limit state design of vertical caisson breakwaters are presented. Reliability analysis of 16 breakwaters in nationwide ports was conducted to calculate the partial safety factors and they were converted into load and resistance factors. The final load resistance factor was calibrated by applying the optimization technique to the individually calculated load resistance factors. Finally, the breakwater was redesigned using the optimal load resistance factor and verified whether the target level was met. The load resistance factor according to the change of the target reliability level is presented to facilitate the limit state design of breakwater.

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

Evaluation of Reliability Index of Governing Load Combination for Design of Cable Supported Bridge Members (케이블교량의 부재 설계를 지배하는 하중조합에 대한 신뢰도지수 평가)

  • Paik, Inyeol;Yoon, Taeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.643-651
    • /
    • 2014
  • In this paper the reliability analyses of the cable-supported bridge design code which is recently issued in Korea are performed and the results are presented. Governing load combinations for the member design and the statistical properties of the main members are introduced and the analysis is performed using an example cable-stayed bridge for which the design is performed following the load and resistance factors defined in the design code. The reliability analysis shows the target reliability index can be achieved by applying load and resistance factors and the application of the resistance modification factor can enhance the reliability level if the importance of the bridge needs to be increased. The sensitivity analysis reveals that decreasing uncertainty of the cable strength is critical for obtaining the target reliability index. The study results show that the design using the load and resistance factors of the code can achieve the target reliability indexes for the design of cable supported bridge.

A Study on the Stability Boundary for Multi-Loading System by Using Generalized Inverse (일반역행렬을 이용한 복합하중을 받는 구조물의 안정경계에 관한 연구)

  • Kim, Jae-Yeol;Choong, K. K
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.223-231
    • /
    • 1999
  • 본 연구는 복합하중을 받는 구조물에 있어서 구조물의 안정경계점을 계산하는 방법을 제시하고 있다. 여기에서는 우선 안정경계점에 놓여 있는 기지의 점에 대한 선형해를 일반역행열을 이용하여 선형 증분 평형방정식의 여해와 특이해의 선형결합으로 나타내었다. 다음으로 두 개의 하중계수를 구속하는 선형조건을 도입하고, 그 구속조건하에서 하중계수 비가 일정하게 되도록 반복계산을 수행하므로써, 안정경계점위의 다음 목표점이 얻어진다. 얻어진 이 점을 초기점으로 이용한다. 평형경로를 추적할 때, 본래의 두 개의 하중계수 문제는 하중계수의 비가 일정하다는 조건을 도입하여 단일 하중계수의 문제로 된다. 두 개의 예를 들어 수치해석을 행하였으며, 얻어진 결과로부터 본 연구에서 채택된 방법은 구조물의 경계안정점을 찾는 문제에 적합하며 더욱 개발할 여지가 있음을 보여주고 있다.

  • PDF

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper (점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.271-278
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load, a ten-story and twenty-story structure subjected to gravity and wind load were designed. The code-specified design spectrums were constructed for each soil type and performance objective, and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Inter-story drift was adopted as the primary performance criterion. According to the analysis results, all model structures turned out to satisfy the performance level for most of the soil conditions except for the soft soil(operational level). It was also found that the seismic performance could be greatly enhanced, and the structures were led to behave elastically by installing viscoelastic dampers on appropriate locations.

  • PDF

New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis (도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석)

  • Lee, Hae Sung;Song, Sang Won;Kim, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • This paper brings up fallacy of material factors specified for the design of concrete members in the current Korean limit state design code for highway bridges, and proposes new material factors based on a robust optimization scheme to overcome the fallacy. It is shown that the current load factors in the code and the proposed material factors lead to a much higher reliability index than the target index. The load factors are adjusted to yield the target reliability index using the inverse reliability analysis. A reliability-based approach following the basic concept of Eurocode is formulated to determine material factors as well as load factors. The load-material factors obtained by the proposed reliability-based approach yield a lower reliability level than the target index. Drawbacks of the basic concept of Eurocode are discussed. It is pointed out that differences in the uncertainties between materials and members may cause the lower reliability index of concrete member than the target.