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A Study on the Stability Boundary for Multi-Loading
System by Using Generalized Inverse
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Abstract

A strategy for computing the stability boundary for two-parameter structural problems has been
proposed. In this strategy, the incremental solution to a known point lying on the stability boundary is
first expressed as the linear combination of homogeneous and particular solution of the linear incre-
mental equilibrium equations by using generalized inverse. Next by imposing a linear constraint on the
two loading parameters and then carrying out iteration at constant load, a point lying in the vicinity
of the next target point on the stability boundary is obtained. Numerical analysis has been carried out
on two examples. From the obtained results, it can be concluded that the proposed strategy is worthy
of further development for multi-parameter problems.
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1. Introduction nonlinear static analysis on a given structural

problem is to determine the critical deformed

One of the main purpose of carrying out configuration at which dynamic failure might
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occur due to instability. Whether the instabili-
ty problem is of snap-through or bifurcation
buckling type will depend on numerous factors
such as load type, loading intensity, loading
direction, loading positions, imperfection of
initial structural geometry, variation of materi-
al constant, boundary condition etc. All or
some of these factors when considered in
combination can reveal phenomena which may
be overlooked if they are considered separate-
ly'®. Futhermore for structural design purpose,
evaluation of the critical combination of load-
ing conditions is necessary in order to provide
adequate safety against failure?. Therefore in
order to obtain a more complete understanding
of the behavior of a structure with respect to
stability, it is necessary to perform analysis
considering all or some of the above mentio-
in combination. This ftype of
problem is commonly called multi-parameter

ned factors

problem.

For a given problem with N degrees of
freedom (DOF), we will have N number of
equilibrium equations in hand. If the influence
of M(=1) different parameters on structural
stability is to be investigated, additional con-
straining equations with regards to the M pa-
rameters are necessary. Furthermore, since we
are interested in only those solutions represe-
nting critical deformed configurations, additio-
nal condition representing the criteria of the
occurrence of critical solutions must also be
specified. The locus of critical solutions when
projected on to the parameter space is com-
monly called stability boundary(Fig. 1 and
Fig. 2). The computational works carried out
in order to obtain the stability boundary is
termed stability analysis. Huseyin® has extend-
ed the use of perturbation technique to com-

pute the stability boundary for multi-parame-
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ter nonlinear problems. The vanishing of the
determinant D of tangent stiffness matrix has
been used in order to obtain the critical solu-
tions. With Huseyin's approach, derivatives of
the determinant of tangent stiffness matrix are
required. Holzer et. al® have solved the multi-
parameter problem by imposing additional rela-
tions among the different loading parameters
leaving only one independent parameter.

By changing the relations imposed, stability
boundary could then be obtained. As criteria
for detecting the occurrence of critical soluti-
ons the vanishing of D is again used. The
method of solving a multi-parameter system
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Fig. 2 Intersection of two equilibrium surfaces



by reducing it to a single-parameter system is
the most simple method. Nevertheless, in
order to obtain a fairly accurate representa-
tion of the stability boundary, considerable
amount of computation must be carried out.
In order to reduce the amount of computatio-
nal effort required, Rheinboldt® has proposed
three different approaches whereby the stabil-
ity boundary could be computed directly once
a point on it has been obtained. In two of
Rheinboldt’s proposal, solution of an extended
system of equation is necessary. Futhermore,
second derivatives of those quantities appear-
ing in the criteria for critical condition are
necessary. The third method involves a two
step execution of standard continuation meth-
od with different starting tracing direction.
Waszezyszyn and Cichon” have traced the
stability boundary starting from a known point
on it by constraining the different loading pa-
rameters by means of a specified 'loading
process’. In this way, the analysis of a multi-
parameter loading problem is being replaced
by the analysis of a successive series of single
parameter loading problem. In order to distin-
guish between limit and bifurcation point, D is
used in combination with the determinant of
the coefficient matrix of the linearized incre-
mental equations used in the arch-length
method. As a possible way of avoiding any
numerical trouble due to near-critical condi-
tion of tangent stiffness matrix when comput-
ing the stability boundary, Hangai and Kawa-
guchi” have presented a method of stability
analysis by wusing generalized inverse. By
Specifying the unknown coefficients appearing
in the expression of tangent wvector to a
known point on the stability boundary in a
trial-and-error manner, subsequent point lying
on the stability boundary could be determined.
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In this paper, the possibility of using the
generalized inverse in stability analysis has
been further explored. A particular aspect in-
vestigated is the replacement of the trial-and-
error approach in obtaining subsequent points
on stability boundary with a set of procedures
based on continuation method. The purpose of
this study is to present an alternative strategy
for stability analysis with which numerical in-
stability could be avoided and standard conti-
nuation method could be advantageously utili-
zed. Here, the continuation method is a nu-
merical method used to trace nonlinear curves
in a point-wise (point by point) matter. That
is, after determining one point, we continue to
determine the following point using the alrea-
dy determined point as starting point. After a
brief summary of stability analysis using gen-
eralized inverse, the proposed procedures are
described. This is then followed by the results
of two numerical experiments carried out in
order to test applicability of the proposed
strategy. Remarks and conclusion with regards
to the proposed procedures are then presented.

2. Stability analysis using generalized in-
verse?

The equilibrium equations and its linearized
incremental form for a discretized N DOF
problem subjected to the influence of M load-
ing parameters could be written as follows;

r=1(d)—Ap°=0 (1)
Kd4d = dip” (2)
where,

r={r;/" : residual force vector
f={f}" : internal resistant force vector
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d={di}* : generalized displacement vector
A% loading parameter corresponding to
the " constant loading vector p”

K : NXN tangent stiffness matrix

Ad : vector of incremental d

42 vector of increment of loading para-
meter A (i=1~N, a=1~M)

T : notation for transposition

Solutions to eq.(l) will form an equilibrium
surface in the N+M space of d—2', A, -, A".
Equilibrium surface that passes through the
origin of d=0 and =0 is called fundamental
equilibrium surface. The purpose of stability
analysis is to locate the locus of critical
points, namely the stability boundary, which
lies on this surface(Fig. 1 and 2). There are
two types of critical points to be encountered
for structures subjected to multi-parameter
loadings : i) general points and ii) special
points. The former points are limit point-type
(Fig. 1) whilst the latter ones are bifurcation
point-type critical points (Fig. 2). General
points also include bifurcation points as spe-
cial case which occur at certain combination
of A° Incremental solution to any known point
on the equilibrium surface could be obtained
by solving eq.(2). These solutions to eq.(2)
are composed of linear combination of homo-
geneous and particular solution as follow”;

dd=[I-K Klec+K (44"p*) 3)
where,
¢ . arbitrary vector
1 : Identity matrix
K~ : Moore-Penrose generalized inverse of K
For the case of simple critical point where

rank [I-KK]=1, eq(3) will become
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Ad = ch+K 4A*p° 4)

where,
h : linearly independent vector of [I-KK]

For conservatives system, it could be proved
that

h=4¢ (6)

where,
& . eigenvector corresponding to the sm-
allest eigenvalue of K
B arbitrary constant.

By specifying appropriate values to the 1+
M unknownsrm ¢ and 44° solutions which
satisfy eq.(1) and with rank [I-KK]=1
could be obtained through trial-and-error
method. Hence, if a point lying on the stabili-
ty boundary is known stability boundary could
be traced in a point-wise manner. Neverthe-
less, since there is no criteria upon which the
selection of ¢ and 44 could be based, consid-
erable computational effort is necessary in
order to obtain the stability boundary. As a
way to solve this problem, we have proposed
an alternative strategy which makes use of
both generalized inverse and continuation
method. In this paper, only multi-parameter
problem with M=2 has been considered.

3. Tracing of stability boundary with
the use of generalized inverse and
continuation method

Concept of the proposed strategy for stabil-
ity analysis is illustrated in Fig. 3. We assume
that a point P¥(k=1,2,3..) could be computed
by using any standard continuation method
with the constraint A2 = m A' imposed on the
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Fig. 3 Concept of the proposed strategy for the
tracing of stability boundary

two loading parameters, where m, : arbitrary
real constant. In order to obtain the next
point P%*Y, firstly it is necessary to assign val-
ues to the three unknowns ¢, 44 and 42 in
eq.{4). In this paper, the values of 44 and 4X
are selected based on the following condition.

AZV(k+1) . AZ'(k)'f‘A/iz _ (6)
Al,(ki—l) - A"W‘FL’/P = M+

By specifying a chosen value to 41, 4
could be determined by using eq.(5) as follow

A = m:e+1(/11'(k)+41/11) —/12'(”) (7)

The value of ¢ in eq.(4) could be chosen
such that a particular critical component of h
(Bp) is prevented from exceeding certain pre-
scribed limiting value. Addition of the obtai-
ned 4d* to point.

P will yield P& which in general will
not be satisfied the equilibrium equations®. By
loading the two sets of load constant at A***"
and A***Y  iteration to obtain an equilibrium
point lying in the vicinity of P* and on the

A | - EBE

loading plane A = mA' is executed. This
equilibrium point is denoted as P¥*™ in Fig. 3.
After P¥*Y has been computed, P*™ is then
obtained by tracing the equilibrium curve using
continuation method with the following consta-
nt imposed on the two loading parameters

/12 = Mk-ﬂ Al (8)

After P**" is obtained, the above set of pro-
cedures can then be repeated in order to de
termined P¥*?. In this manner, stability bound-
ary could be traced successively. Fig. 4 and
Fig. 5 illustrate the proposed strategy in load-
ing parameter space and loading parameter-
displacement space, respectively. The use of
eq.(7) will reduce the two-parameter problem
to that of a single-parameter loading problem
with A' acting as the system parameter.

In order to identify the type of critical
point P¥ encountered, the following criteria
has been adopted in this paper. Let’s denote
the triangularization of K as

K=LDL" 9)

stability
boundary

“““ o) (A2=m42 ') stable

(A% =mp,d')

(12=mk+2/11)

~a

unstable
22

Fig. 4 lllustration of the strategy in loading para-
meter plane
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Fig. 5 lllustration of the strategy in loading para-
meter plane

where
D : diagonal matrix
L : lower triangular matrix.

Let's denote NP as the number of negative
diagonal elements of matrix D. Whenever NP
is observed to be changing from 0 to 1(or
vice versa), 4&' is examined and P¥ is classi-
fied either as limit point or bifurcation point
as follows;

sign (dA\.,) =sign (4A}) =Dbifurcation point

sign (4A) Fsign (4A) =limit point

We note that criteria described here can be
applied to only the case that the P¥ encoun-
tered corresponds to the first critical point
lying on the primary equilibrium curve.

4. Numerical examples

Stability analysis using the procedures de-
scribed in section 3 has been carried out on
Stability boundary
which consists of general points and special

two numerical models.
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points have been traced for the first and sec-
ond numerical example, respectively. Modified
Riks’ arc-length method with normal plane
constraint has been used as the continuation
method.

4.1 Bergan’s truss

This 2-DOF model (Fig. 6) consists of three
linear springs with spring constant k, and k..
The horizontal spring is assumed to retain its
initial inclination during deformation. Two
point loads P' and P? act at node 2 in the di-
rections of z-axis and y-axis, respectively.
The loading parameters A' and A* are defined
as rm P'/Pi and P?/P3, respectively, with both
the reference load P} and P§ assumed as
unity. Two sets of stability analysis with the
ratio H/L assumed as 0.35 and 0.45 respecti-
vely have been carried out. The values of ¢=
0.05 and 4A'=-5 have been used during the
analysis for both cases of H/L. Fig. 7 shows
the stability boundaries traced for two cases
of H/L. The values of A' and A* for points
lying on two stability boundaries are listed in
Table 1 and 2. Al critical points lying on
both stability boundaries are general points.

For the case of H/L=0.45, bifurcation point

Fig. 6 Bergan’s truss
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Fig. 7 The two stability boundaries of Bergan’s
truss

Table 1 Resuit of Stability analysis carried out on
Bergan’ s truss(H/L=0.350)

H/L=0.350
A A m(A=mA)
-1.534 30.678 -0.050
0.000 31.135 0.000
1.634 30.678 0.050
2.984 29.845 0.100
5.606 28.030 0.200
9.961 24.901 0.400
13.471 22.4562 0.600
18.910 18.910 1.000
23.873 15.915 1.500
27.625 13.812 2.000
30.535 12.214 2.5600
33.121 11.040 3.000
35.153 10.044 3.500

has been detected when the constraint P?=0
is imposed. The occurrence of such bifurca-
tion point will appear in the form of a cusp
on the stability boundary. For both cases, the

HA Q- EEE

Table 2 Result of Stability analysis carried out on
Bergan’ s truss(H/L=0.450)

H/L=0.450
A A m(F=mA)
-1.634 30.678 -0.050
0.000 31.135 0.000
1.534 30.678 0.050
2.984 29.845 0.100
5.606 28.030 0.200
9.961 24.901 0.400
13.471 22.452 0.600
18.910 18.910 1.000
23.873 15915 1.500
27.625 13.812 2.000
30.535 12.214 2.500
33.121 11.040 3.000
36.163 10.044 3.500

first point on the stability boundary has been
computed by setting P>=0.

4. 2 Circular arch

This was taken from the paper by Huseyin'.
The model(Fig. 8) has 2 DOF which corre-
spond to the two generalized displacement @,
and Q: as appearing in the following expres-
sion for the radial displacement W :
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W/R=Q. cos [76/Q26,)]
+ Q. sin [ (70 /6] (8

where R indicates the radius of circular arch.
This model is subjected to P' and P? which
correspond to concentrated load at the apex
of arch and uniform distributed pressure, re-
spectively. P! and P? are related to the load-
ing parameter A' and A% as follows : P' = AP}
and P’=A"Pi Both reference loads Pi and P}
are again assumed to be unity. The width of
the arch is taken as unity so that cross secti-
onal area A will be equal to the thickness h.
Stability analysis has been carried out using
6 = 30°, R/h =0.025, h=0.025, ¢=0.001, 4A'=
-0.001 and -0.0001. Fig. 9 shows the stability
boundary. For this model, all critical points
lying on the stability boundary are special
points. The computed values of A' and A
for points on the stability boundary are list-
ed in Table 3. The first critical point PY
has been obtained by imposing the constrai-
ntrm P?=0.

(-]
T
4

AYEA(x10”: concentrated load)

—
H

0 i 2 3 4
AYEA(x10™ : uniform pressure load)

Fig. 9 Stability boundaries of circular arch
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Table 3 Result of Stability analysis carried out on
circular arch

H/L=0.450
A/EA(X107% | mFB=mA) | F/EA(X107Y
46.622 0.000 0.000
41.010 0.410 0.010
36.660 0.733 0.020
33.130 0.828 0.025
26.830 1.342 0.050
22.510 1.688 0.075
19.810 1.981 0.100
12.580 2516 0.200
9.180 2.754 0.300
7.180 2.872 0.400
6.660 2.997 0.450
6.090 3.045 0.500
5.610 3.085 0.550
5.090 3.054 0.600
4.420 3.094 0.700
3.990 3.192 0.800
3.580 3.222 0.900
3.240 3.240 1.000
2.980 3.278 1.100
0.000 4.430 o0

5. Remarks and Conclusion

We note that during the numerical analysis,
the point P¥*? could be obtained without dif-
ficulty starting from the point P¥ (Fig. 3).
One problem in tracing direction was however
faced during the execution of continuation
process in order to obtain the next target
point P**Y in the second numerical example.
In this study, the tracing direction was speci-
fied in such a way that tracing will proceed
in the direction of increasing loading parame-
ter. For the case where critical points lying
on the stability boundary are general points,
such specification has worked well. On the



other hand, such specification worked well in
the case of stability boundary with special
points only if the loading parameter at P¥*" is
less than the loading parameter at P¥**’ as
can be seen from Fig. 10. Under the second
situation as depicted in Fig. 10, tracing direc-
tion must be altered in order that the target
point P& could be obtained. In this study,
such alteration in tracing direction was carried
out whenever it was monitored that the deter-
minant of the tangent stiffness matrix tends to
increase rather than decrease. This means that
a more general criteria for the determination
of tracing direction might be necessary.

A strategy for stability analysis by combin-
ing the use of generalized inverse and combi-
nation method has been proposed. From the
nurnerical results, it can be concluded that
the strategy is worthy of further development.
Testing of the applicability of the proposed
strategy for two-parameter and more general
multi-parameter problem with larger DOF
may be the subject of future research.

!

A4 M2 AR used in the second situation

> : specified tracing direction

second situation
dy

Fig. 10 Nlustration of a situation where target crit-
ical point will not be obtained without alte—
ration in tracing direction
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