Yoon, Dong Jin;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
Smart Media Journal
/
v.10
no.3
/
pp.39-47
/
2021
Enhanced index tracking is a problem of optimizing the objective function to generate returns above the index based on the index tracking that follows the market return. In order to avoid problems such as large transaction costs and illiquidity, we used a method of constructing a portfolio by selecting only some of the stocks included in the index. Commonly used enhanced index tracking methods tried to find the optimal portfolio with only one objective function in all tested periods, but it is almost impossible to find the ultimate strategy that always works well in the volatile financial market. In addition, it is important to improve generalization performance beyond optimizing the objective function for training data due to the nature of the financial market, where statistical characteristics change significantly over time, but existing methods have a limitation in that there is no direct discussion for this. In order to solve these problems, this paper proposes ensemble learning that composes a portfolio by combining several objective functions and a 3-stage portfolio selection algorithm that can select a portfolio by applying criteria other than the objective function to the training data. The proposed method in an experiment using the S&P500 index shows Sharpe ratio that is 27% higher than the index and the existing methods, showing that the 3-stage portfolio selection algorithm and ensemble learning are effective in selecting an enhanced index portfolio.
For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions
본 논문에서는 사이클로트론 전자석의 설계과정을 체계화하고, 자기장 최적화 과정을 순차적 근사화 기법을 이용하여 설계를 진행하였다. 설계하는 전자석은 방사성동위원소생산을 목적으로하는 PET(Positron Emission Tomography) 사이클로트론 이며, 크기를 줄이고 동위원소의 효율적인 생산을 위해 에너지대역은 10MeV로 선정하였다. 설계과정은 실험계획법 중 하나인 LHS(Latin Hypercube Sampling) 기법을 통해 샘플 데이터를 구성하고, 이를 바탕으로 크리깅을 이용해 근사모델을 구성한다. 근사 모델과 진화 알고리즘을 이용해 목적에 맞는 최적의 형상을 찾을 수 있다. 이러한 과정을 반복함으로써 점진적으로 목적에 부합하는 형상을 찾을 수 있다. 각각의 형상의 성능을 판단하는 목적함수를 단계별로 규칙을 정함으로써 결과의 신뢰도를 높인다. 이로써 시간적 효율을 증대시키고 전문지식이 부족한 설계자도 고성능의 형상을 얻을 수 있다. 최적화과정은 STEP1과 STEP2로 나누어 진행되며, STEP1에서는 초기사이클로트론 전자석을 설계하고, 자기장 최적화를 진행한다. STEP2에서는 빔 시뮬레이션 및 분석을 통하여 최적화를 진행하고, 최종적으로 전자석모델을 완성한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.367-370
/
2005
본 논문에서는 정보 입자화와 유전자 알고리즘을 기반으로 최적 퍼지 다항식 뉴럴네트워크를 제안하고, 유전자 알고리즘을 사용하여 종합적인 설계방법을 개발한다. 제안된 모델은 기존의 진화론적 퍼지 다항식 뉴럴네트워크의 구조를 정보입자화를 통해 좀 더 빠르게 최적의 해공간에 접근시키는데 그 목적이 있다. 퍼지 관계기반 다항식 뉴럴네트워크는 퍼지 다항식 뉴론이 기초가 되어 가능한 구조적이고 요소적으로 모델의 성능을 향상 시켜준다. 퍼지 다항식 뉴런의 최적 구조를 위해 유전자 알고리즘을 이용하여 입력변수의 수와 후반부 다항식의 차수 입력변수 수에 따른 입력변수 그리고 멤버쉽 함수의 수를 동조한다. 여기서, 클러스터링의 하나의 방법인 HCM에 의해 퍼지 규칙 각각의 전반부와 후반부에 데이터 중심값을 이용하여 다항식함수의 파라미터값을 결정한다. 제안된 유전론적 퍼지 관계 다항식 뉴럴네트워크의 성능평가는 기존 퍼지 모델링에서 이용된 표준 데이터를 활용하여 평가한다.
Kim, Young-Yong;Kim, Jong-Yul;Jang, Se-Hwan;Lee, Haw-Seok;Park, June-Ho
Proceedings of the KIEE Conference
/
2007.11b
/
pp.127-129
/
2007
최적조류계산(Optimal Power Flow:OPF)은 전력계통에서 여러 가지 제약 조건을 만족하면서 경제적이고 안전하게 계통을 운영하기 위한 기법이다. 종래의 계산방법에는 비선형 계획법, 선형계획법 같은 수치해석적인 방법을 사용하였다. 그러나, 이러한 방법들은 전역 최저해를 구하기 위해서는 목적함수가 convex해야 한다. 또한, 계통 규모가 클 경우, 최적해 수렴이 안 되거나 수렴이 되더라도 시간이 많이 걸리는 단점이 있다. 최근에는 이러한 문제를 극복하고자 여러 가지 진화연산기법들이 최석조류계산 문제에 적용되고 있다. 본 논문에서 최근에 등장한 PSO알고리즘을 수정한 MPSO알고리즘은 이용한 최적조류계산 기법을 소개하고, 제안한 방법의 유용성을 보이기 위하여 IEEE 30,118 모선 계통의 최적 조류계산 문제에 적용하였다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.80-82
/
2012
전쟁수행 패러다임이 변화하면서 NCW 환경에서 발생하는 네트워크 파워를 측정하려는 많은 연구들이 수행되고 있다. 그러나 기존의 연구는 현실의 전장환경내 구축되어 있는 C2 체계의 네트워크 구조와 각 시스템간의 상호운용성 요소를 평가에 반영하지 못하고 있다. 따라서 본 연구에서는 최근 다양한 분야에서 활용되고 있는 소셜 네트워크 분석 기법을 적용하여 다수의 지휘통제체계에 의해 구축되는 네트워크 구조를 평가할 수 있는 알고리즘을 제안한다. 제안한 알고리즘을 통해 진화하는 군 C2 체계의 네트워크 구조를 대상으로 평가 결과를 분석해보았으며, 연결성에 근거한 네트워크 구조에 상호운용성 가치를 반영함으로써 보다 실질적인 네트워크 파워를 제시함에 그 목적이 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.321-322
/
2014
게임에서 캐릭터가 현재 위치에서 목적지까지 경로를 탐색하는 것은 매우 중요하다. 특히, 오브젝트나 벽 등의 장애물들이 배치된 복잡한 게임 맵에서는 이러한 장애물을 회피하면서 가능한 최단 경로를 찾아 이동해야 한다. 본 논문에서는 복잡한 게임 맵 상에서 캐릭터가 목적지까지 최단 경로를 탐색하는 방법으로 유전자 알고리즘을 적용하는 방법을 제안한다. 유전자 알고리즘은 모집단(Population)을 구성하는 염색체의 인코딩 및 디코딩, 진화를 위한 연산자인 교차연산(Crossover)과 돌연변이연산(Mutation), 그리고 염색체를 평가하는 목적함수로 구성된다. 본 논문에서는 염색체 구성을 시작 노드에서 목적지 노드까지의 전체 노드로 구성하기 보다는 캐릭터의 현재노드에서 이동할 수 있는 8방향만으로 구성하여 염색체의 크기를 줄였고, 이를 통해 염색체의 인코딩과 디코딩 연산 시간을 줄일 수 있었다.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.46
no.2
/
pp.27-37
/
2009
Sensor nodes forming a sensor network have limited energy capacity such as small batteries and when these nodes are placed in a specific field, it is important to research minimizing sensor nodes' energy consumption because of difficulty in supplying additional energy for the sensor nodes. Clustering has been in the limelight as one of efficient techniques to reduce sensor nodes' energy consumption in sensor networks. However, energy saving results can vary greatly depending on election of cluster heads, the number and size of clusters and the distance among the sensor nodes. /This research has an aim to find the optimal set of clusters which can reduce sensor nodes' energy consumption. We use a Genetic Algorithm(GA), a stochastic search technique used in computing, to find optimal solutions. GA performs searching through evolution processes to find optimal clusters in terms of energy efficiency. Our results show that GA is more efficient than LEACH which is a clustering algorithm without evolution processes. The two-dimensional GA (2D-GA) proposed in this research can perform more efficient gene evolution than one-dimensional GA(1D-GA)by giving unique location information to each node existing in chromosomes. As a result, the 2D-GA can find rapidly and effectively optimal clusters to maximize lifetime of the sensor networks.
Park, Yoonsun;Lee, Dongkun;Yoon, Eunjoo;Mo, Yongwon;Leem, Jihun
Journal of Environmental Impact Assessment
/
v.26
no.1
/
pp.44-56
/
2017
Sustainable development is important because the ultimate objective is efficient development combining the economic, social, and environmental aspects of urban conservation. Despite Korea's rapid urbanization and economic development, the distribution of resources is inefficient, and land-use is not an exception. Land use distribution is difficult, as it requires considering a variety of purposes, whose solutions lie in a multipurpose optimization process. In this study, Yangpyeong-eup, Yangpyeong, Gyeonggi-do, is selected, as the site has ecological balance, is well-preserved, and has the potential to support population increases. Further, we have used the genetic algorithm method, as it helps to evolve solutions for complex spatial problems such as planning and distribution of land use. This study applies change to the way of mutation. With four goals and restrictions of area, spatial objectives, minimizing land use conversion, ecological conservation, maximizing economic profit, restricting area to a specific land use, and setting a fixed area, we developed an optimal planning map. No urban areas at the site needed preservation and the high urban area growth rate coincided with the optimization of purpose and maximization of economic profit. When the minimum point of the fitness score is the convergence point, we found optimization occurred approximately at 1500 generations. The results of this study can support planning at Yangpyeong-eup.ausative relationship between the perception of improving odor regulation and odor acceptance.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.11a
/
pp.599-617
/
2006
A network model and a Genetic Algorithm(GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing the non-linear objective functions with the linear constraints. In the model, the flow-conservation constraints of the network are utilized to restrict the solution space and to force the link flows meet the traffic counts. The objective of the model is to minimize the discrepancies between the link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links and the link flows estimated through the traffic assignment using the path flow estimator in the legit-based SUE. In the proposed GA, a chromosome is defined as a vector representing a set of Origin-Destination Matrix (ODM), link flows and travel-cost coefficient. Each chromosome is evaluated from the corresponding discrepancy, and the population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment is applied during the crossover and mutation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.